Cargando…

Proceedings of the Fifth International Conference on Machine Learning : June 12-15, 1988, University of Michigan, Ann Arbor, Michigan /

Machine Learning Proceedings 1988.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores Corporativos: International Conference on Machine Learning University of Michigan, American Association for Artificial Intelligence
Otros Autores: Laird, John, 1954- (Editor )
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: San Mateo, Calif. : Morgan Kaufmann, Publishers, [1988]
Colección:Proceedings - international conference on machine learning ; 5th
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893577283
003 OCoLC
005 20231120111819.0
006 m o d
007 cr cnu---unuuu
008 141022s1988 caua o 101 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OPELS  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d IDEBK  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d DEBBG  |d OCLCQ  |d MERUC  |d STF  |d OCLCQ  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897647155  |a 907079695  |a 1162405722 
020 |a 9781483297699  |q (electronic bk.) 
020 |a 1483297691  |q (electronic bk.) 
020 |z 0934613648 
020 |z 9780934613644 
035 |a (OCoLC)893577283  |z (OCoLC)897647155  |z (OCoLC)907079695  |z (OCoLC)1162405722 
050 4 |a Q325 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 23 
084 |a 54.72  |2 bcl 
111 2 |a International Conference on Machine Learning  |n (5th :  |d 1988 :  |c University of Michigan) 
245 1 0 |a Proceedings of the Fifth International Conference on Machine Learning :  |b June 12-15, 1988, University of Michigan, Ann Arbor, Michigan /  |c editor/program chair, John Laird. 
264 1 |a San Mateo, Calif. :  |b Morgan Kaufmann, Publishers,  |c [1988] 
264 4 |c �1988 
300 |a 1 online resource (vii, 467 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Proceedings - international conference on machine learning ;  |v 5th 
500 |a "The American Association of Artificial Intelligence ... provided support for the organization and planning of the conference." 
500 |a Includes index. 
505 0 |a Empirical learning : Using a generalization hierarchy to learn from examples / Randy G. Kerber ; Tuning rule-based systems to their environments / Hans Tallis ; On asking the right questions / Brent J. Krawchuk and Ian H. Witten ; concept simplification and prediction accuracy / Douglas H. Fisher and Jeffrey C. Schlimmer ; Learning graph models of shape / Jakub Segen ; Learning categorical decision criteria in biomedical domains / Kent A. Spackman ; Conceptual clumping of binary vectors with Occam's Razor / Jakub Segen ; AutoClass: a Bayesian classification system / Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor, and Don Freeman ; Incremental multiple concept learning using experiments / Klaus P. Gross ; Trading off simplicity and coverage in incremental concept learning / Wayne Iba, James Wogulis and Pat Langley ; Deferred commitment in UNIMEM: waiting to learn / Michael Lebowitz ; Experiments on the costs and benefits of windowing in ID3 / Jarryl Wirth and Jason Catlett ; Improved decision trees: a generalized version of ID3 / Jie Cheng, Usama M. Fayyad, Keki B. Irani and Zhaogang Qian ; ID5: in incremental ID3 / Paul E. Utgoff ; Using weighted networks to represent classification knowledge in noisy domains / Ming Tan and Larry Eshelman. 
505 0 |a Genetic learning : An empirical comparison of genetic and decision-tree classifiers / J.R. Quinlan ; Population size in classifier systems / George G. Robertson ; Representation and hidden bias: gray vs. binary coding for genetic algorithms / Richard A. Caruana and J. David Schaffer ; Classifier systems with hamming weights / Lawrence Davis and David K. Young ; Midgard: a genetic approach to adaptive load balancing for distributed systems / Adrian V. Sannier II and Erik D. Goodman -- Connectionist learning : Some interesting properties of a connectionist inductive learning system / Edward J. Wisniewski and James A. Anderson ; Competitive reinforcement learning / Kenton J. Lynne ; Connectionist learning of expert backgammon evaluations / G. Tesauro ; Building and using mental models in a sensory-motor domain: a connectionist approach / Bartlett W. Mel. 
505 0 |a Explanation-based learning : Reasoning about operationality for explanation-based learning / Haym Hirsh ; Boundaries of operationality / Michael S. Braverman and Stuart J. Russell ; On the tractability of learning from incomplete theories / Sridhar Mahadevan and Prasad Tadepalli ; Active explanation reduction: an approach to the multiple explanations problem / Shankar A. Rajamoney and Gerald F. DeJong ; Generalizing number and learning from multiple examples in explanation based learning / William W. Cohen ; Generalizing the order of operators in macro-operators / Raymond J. Mooney ; Using Experienced-based learning in game playing / Kenneth A. De Jong and Alan C. Schultz -- Integrated explanation-based and empirical learning : Integrated learning with incorrect and incomplete theories / Michael J. Pazzani ; An approach based on integrated learning to generating stories from stories / Claudio Carpiento ; A knowledge intensive approach to concept induction -- Case-based learning : Learning to program by examining and modifying cases / Robert S. Williams. 
505 0 |a Machine discovery : Theory discovery and the hypothesis language / Kevin T. Kelly ; Machine invention of first order predicates by inverting resolution / Stephen Muggleton and Wray Buntine ; The interdependencies of theory formation, revision, and experimentation / Brian Falkenhainer and Shankar Rajamoney ; A hill-climbing approach to machine discovery / Donald Rose and Pat Langley ; Reduction: a practical mechanism of searching for regularity in data / Yi-Hua Wu -- Formal models of concept learning : Extending the valiant learning model / Jonathan Amsterdam ; Learning systems of first-order rules / Nicolas Helft ; Two new frameworks for learning / B.K. Natarajan and P. Tadepalli ; Hypothesis filtering: a practical approach to reliable learning / Oren Etzioni -- Experimental results in machine learning : Diffy-S: learning robot operator schemata from examples / Carl M. Kadie ; Experimental results from an evaluation of algorithms that learn to control dynamic systems / Claude Sammut ; Utilizing experience for improving the tactical manager / Michael D. Erickson and Jan M. Zytkow -- Computational impact of learning and forgetting : Some chunks are expensive / Milind Tambe and Allen Newell -- The role of forgetting in learning / Shaul Markovitch and Paul D. Scott. 
588 0 |a Print version record. 
504 |a ReferencesChapter 7. Conceptual Clumping of Binary Vectors with Occam's Razor; Abstract; 1. Introduction; 2. Cluster configuration cost; 3. Finding clusters by minimizing the configuration cost; 4. Concluding remarks; References; Chapter 8. AutoClass: A Bayesian Classification System; Abstract; 1 Introduction; 2 Overview of Bayesian Classification; 3 The AutoClass II Program; 4 Extensions to the Model; 5 Results; 6 Conclusion; References; Chapter 9. Incremental Multiple Concept Learning Using Experiments; Abstract; 1. Introduction; 2. Terminology; 3. The primitive operations. 
520 |a Machine Learning Proceedings 1988. 
546 |a English. 
650 0 |a Machine learning  |v Congresses. 
650 6 |a Apprentissage automatique  |0 (CaQQLa)201-0131435  |v Congr�es.  |0 (CaQQLa)201-0378219 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
655 2 |a Congress  |0 (DNLM)D016423 
655 7 |a proceedings (reports)  |2 aat  |0 (CStmoGRI)aatgf300027316 
655 7 |a Conference papers and proceedings  |2 fast  |0 (OCoLC)fst01423772 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congr�es.  |2 rvmgf  |0 (CaQQLa)RVMGF-000001049 
700 1 |a Laird, John,  |d 1954-  |e editor. 
710 2 |a American Association for Artificial Intelligence. 
776 0 8 |i Print version:  |a International Conference on Machine Learning (5th : 1988 : University of Michigan).  |t Proceedings of the Fifth International Conference on Machine Learning  |z 0934613648  |w (DLC) 88012799  |w (OCoLC)18017017 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780934613644  |z Texto completo