Cargando…

Uncertainty in artificial intelligence 5 /

This volume, like its predecessors, reflects the cutting edge of research on the automation of reasoning under uncertainty. A more pragmatic emphasis is evident, for although some papers address fundamental issues, the majority address practical issues. Topics include the relations between alternati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Henrion, Max (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; New York : North-Holland, 1990.
Colección:Machine intelligence and pattern recognition ; v. 10.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn893436290
003 OCoLC
005 20231120111812.0
006 m o d
007 cr cnu---unuuu
008 141020s1990 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d YDXCP  |d EBLCP  |d IDEBK  |d DEBSZ  |d MERUC  |d OCLCQ  |d IDB  |d STF  |d OCLCQ  |d UKAHL  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 897647340  |a 1162418686 
020 |a 9781483296555  |q (electronic bk.) 
020 |a 1483296555  |q (electronic bk.) 
020 |z 9780444887382 
035 |a (OCoLC)893436290  |z (OCoLC)897647340  |z (OCoLC)1162418686 
050 4 |a Q335 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 0 0 |a Uncertainty in artificial intelligence 5 /  |c edited by Max Henrion [and others]. 
264 1 |a Amsterdam ;  |a New York :  |b North-Holland,  |c 1990. 
264 2 |a New York, N.Y., U.S.A. :  |b Distributors for the U.S. and Canada, Elsevier Science Pub. Co. 
264 4 |c �1990 
300 |a 1 online resource (xiv, 459 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Machine intelligence and pattern recognition ;  |v volume 10 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover; Uncertainty in Artificial Intelligence 5; Copyright Page; Preface; Table of Contents; Reviewers; Program Committee; Contributors; PART I: FUNDAMENTAL ISSUES; Chapter 1. Lp-A Logic for Statistical Information; 1 Introduction; 2 Other Probability Logics; 3 Types of Statistical Knowledge; 4 Syntax and Semantics; 5 Syntax; 6 Examples of Representation; 7 Deductive Proof Theory; 8 Degrees of Belief; Acknowledgments; References; CHAPTER2. REPRESENTING TIME IN CAUSAL PROBABILISTIC NETWORKS; 1 INTRODUCTION1; 2 THE DISTRIBUTION OF TIME; 3 MARKED POINT PROCESS REPRESENTATION. 
505 8 |a 4 NETWORKS OF ""DATES""Acknowledgements; References; CHAPTER3. CONSTRUCTING THE PIGNISTIC PROBABILITY FUNCTION IN A CONTEXT OF UNCERTAINTY; 1. Introduction; 2. The credibility function; 3. a-combined credibility spaces; 4. The pignistic probability function; 5. Co-credibility function; 6. The Moebius transformations of Cr; 7. Conclusions; Bibliography; Acknowledgements; Chapter 4. Can Uncertainty Management Be Realized In A Finite Totally Ordered Probability Algebra?; 1 Introduction; 2 Finite totally ordered probability algebras; 3 Bayes theorem and reasoning by case. 
505 8 |a 4 Problems with legal finite totally ordered probability5 An experiment; 6 Conclusion; Acknowledgements; References; Appendix A: Derivation of; Appendix B: Examples of legal FTOPAs; Appendix C; PART Il: DEFEASIBLE REASONING AND UNCERTAINTY; Chapter 5. Defeasible Reasoning and Uncertainty: Comments; 1 Overview; 2 Goldszmidt & Pearl; 3 Bonissone et al; 4 Loui; 5 Reference Classes: What They Didn't Talk About, But Somebody Should!; Acknowledgements; References; Chapter 6. Uncertainty and Incompleteness: Breaking the Symmetry of Defeasible Reasoning ; 1 Introduction; 2 Plausible Reasoning Module. 
505 8 |a 3 Finding Admissible Labelings4 Algorithms and Heuristics; 5 Conclusions; References; Chapter 7. Deciding Consistency of Databases Containing Defeasible and Strict Information; 1 Introduction; 2 Notation and Preliminary Definitions; 3 Probabilistic Consistency and Entailment; 4 An Effective Procedure for Testing Consistency; 5 Examples; 6 Conclusions; Acknowledgments; References; CHAPTER8. DEFEASIBLE DECISIONS: WHAT THE PROPOSAL IS AND ISN'T; 1 WHAT THE PROPOSAL IS; 2 WHAT THE PROPOSAL ISN'T; 3 AN OPEN CONVERSATION WITH RAIFFA. 
505 8 |a CHAPTER9. CONDITIONING ON DISJUNCTIVE KNOWLEDGE: SIMPSON'S PARADOX IN DEFAULT LOGIC1. INTRODUCTION; 2. DOES AN EMU OR OSTRICH RUN?; 3. ARTS STUDENTS AND SCIENCE STUDENTS; 4. DISCUSSION OF THE PARADOX; 6. CONCLUSIONS; ACKNOWLEDGEMENTS; REFERENCES; PART Ill: ALGORITHMS FOR INFERENCE IN BELIEF NETS; Chapter 10. An Introduction to Algorithms for Inference in Belief Nets; 1. Introduction; 2. Qualitative, real, and interval-valued belief representations; 3. Early approaches; 4. Exact methods; 5. Two level belief networks; 6. Stochastic simulation and Monte Carlo schemes; 7. Final remarks. 
520 |a This volume, like its predecessors, reflects the cutting edge of research on the automation of reasoning under uncertainty. A more pragmatic emphasis is evident, for although some papers address fundamental issues, the majority address practical issues. Topics include the relations between alternative formalisms (including possibilistic reasoning), Dempster-Shafer belief functions, non-monotonic reasoning, Bayesian and decision theoretic schemes, and new inference techniques for belief nets. New techniques are applied to important problems in medicine, vision, robotics, and natural language und. 
546 |a English. 
650 0 |a Artificial intelligence. 
650 0 |a Uncertainty (Information theory) 
650 0 |a Reasoning. 
650 2 |a Artificial Intelligence  |0 (DNLM)D001185 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 6 |a Incertitude (Th�eorie de l'information)  |0 (CaQQLa)201-0003328 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Reasoning  |2 fast  |0 (OCoLC)fst01091282 
650 7 |a Uncertainty (Information theory)  |2 fast  |0 (OCoLC)fst01160838 
650 7 |a Incertitude.  |2 ram 
700 1 |a Henrion, Max,  |e editor. 
776 0 8 |i Print version:  |t Uncertainty in artificial intelligence 5  |z 0444887385  |w (DLC) 90194014  |w (OCoLC)22452207 
830 0 |a Machine intelligence and pattern recognition ;  |v v. 10. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444887382  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09230459/10  |z Texto completo