Cargando…

Foundations of statistical mechanics : a deductive treatment /

International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Penrose, O. (Oliver) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1969, �1970]
Edición:First edition].
Colección:International series of monographs in natural philosophy ; v. 22.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Foundations of Statistical Mechanics: A Deductive Treatment; Copyright Page; Table of Contents; Preface; The Main Postulates of this Theory; CHAPTER I. Basic Assumptions; 1. Introduction; 2. Dynamics; 3. Observation; 4. Probability; 5. The Markovian postulate; 6. Two alternative approaches; CHAPTER II. Probability Theory; 1. Events; 2. Random variables; 3. Statistical independence; 4. Markov chains; 5. Classification of observational states; 6. Statistical equilibrium; 7. The approach to equilibrium; 8. Periodic ergodic sets; 9. The weak law of large numbers.
  • CHAPTER III. The Gibbs Ensemble1. Introduction; 2. The phase-space density; 3. The classical Liouville theorem; 4. The density matrix; 5. The quantum Liouville theorem; CHAPTER IV. Probabilities from Dynamics; 1. Dynamical images of events; 2. Observational equivalence; 3. The classical accessibility postulate; 4. The quantum accessibility postulates; 5. The equilibrium ensemble; 6. Coarse-grained ensembles; 7. The consistency condition; 8. Transient states; CHAPTER V. Boltzmann Entropy; 1. Two fundamental properties of entropy; 2. Composite systems; 3. The additivity of entropy.
  • 4. Large systems and the connection with thermodynamics5. Equilibrium fluctuations; 6. Equilibrium fluctuations in a classical gas; 7. The kinetic equation for a classical gas; 8. Boltzmann's H theorem; CHAPTER VI. Statistical Entropy; 1. The definition of statistical entropy; 2. Additivity properties of statistical entropy; 3. Perpetual motion; 4. Entropy and information; 5. Entropy changes in the observer; Solutions to Exercises; Index; OTHER TITLES IN THE SERIES IN NATURAL PHILOSOPHY.