Foundations of statistical mechanics : a deductive treatment /
International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Pergamon Press,
[1969, �1970]
|
Edición: | First edition]. |
Colección: | International series of monographs in natural philosophy ;
v. 22. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Foundations of Statistical Mechanics: A Deductive Treatment; Copyright Page; Table of Contents; Preface; The Main Postulates of this Theory; CHAPTER I. Basic Assumptions; 1. Introduction; 2. Dynamics; 3. Observation; 4. Probability; 5. The Markovian postulate; 6. Two alternative approaches; CHAPTER II. Probability Theory; 1. Events; 2. Random variables; 3. Statistical independence; 4. Markov chains; 5. Classification of observational states; 6. Statistical equilibrium; 7. The approach to equilibrium; 8. Periodic ergodic sets; 9. The weak law of large numbers.
- CHAPTER III. The Gibbs Ensemble1. Introduction; 2. The phase-space density; 3. The classical Liouville theorem; 4. The density matrix; 5. The quantum Liouville theorem; CHAPTER IV. Probabilities from Dynamics; 1. Dynamical images of events; 2. Observational equivalence; 3. The classical accessibility postulate; 4. The quantum accessibility postulates; 5. The equilibrium ensemble; 6. Coarse-grained ensembles; 7. The consistency condition; 8. Transient states; CHAPTER V. Boltzmann Entropy; 1. Two fundamental properties of entropy; 2. Composite systems; 3. The additivity of entropy.
- 4. Large systems and the connection with thermodynamics5. Equilibrium fluctuations; 6. Equilibrium fluctuations in a classical gas; 7. The kinetic equation for a classical gas; 8. Boltzmann's H theorem; CHAPTER VI. Statistical Entropy; 1. The definition of statistical entropy; 2. Additivity properties of statistical entropy; 3. Perpetual motion; 4. Entropy and information; 5. Entropy changes in the observer; Solutions to Exercises; Index; OTHER TITLES IN THE SERIES IN NATURAL PHILOSOPHY.