|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892068304 |
003 |
OCoLC |
005 |
20231120111758.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1987 caua ob 101 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d N$T
|d E7B
|d OCLCF
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCO
|d OCL
|d OCLCO
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VT2
|d VLY
|d LUN
|d OCLCQ
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 897646809
|a 1156388280
|a 1162559282
|a 1175713750
|
020 |
|
|
|a 9781483282855
|q (electronic bk.)
|
020 |
|
|
|a 1483282856
|q (electronic bk.)
|
020 |
|
|
|z 0934613419
|
020 |
|
|
|z 9780934613415
|
035 |
|
|
|a (OCoLC)892068304
|z (OCoLC)897646809
|z (OCoLC)1156388280
|z (OCoLC)1162559282
|z (OCoLC)1175713750
|
050 |
|
4 |
|a Q325.5
|b .I6 1987eb
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.3/1
|2 23
|
084 |
|
|
|a 54.72
|2 bcl
|
084 |
|
|
|a 77.34
|2 bcl
|
111 |
2 |
|
|a International Workshop on Machine Learning
|n (4th :
|d 1987 :
|c Irvine, Calif.)
|
245 |
1 |
0 |
|a Proceedings of the Fourth International Workshop on Machine Learning :
|b June 22-25, 1987, University of California, Irvine /
|c editor-program chair, Pat Langley ; administrative organizer, Caroline Ehrlich ; sponsored by American Association for Artificial Intelligence [and others].
|
264 |
|
1 |
|a Los Altos, CA :
|b M. Kaufmann Publishers,
|c �1987.
|
300 |
|
|
|a 1 online resource (vi, 403 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover ; Proceedings of the Fourth International Workshop on Machine Learning; Copyright Page; Table of Contents ; PREFACE; Chapter 1. Learning about speech sounds:The NEXUS Project; Abstract; 1. Introduction; 2. Instance-Based Learning Mechanisms; 3. Learning in NEXUS; 4. Empirical Tests of NEXUS; 5. Summary; Acknowledgements; References; Chapter 2. Protos: An Exemplar-Based LearningApprentice; Abstract; 1. Introduction; 2. Issues in Exemplar-based Systems and Their Solutions in Protos; 3. An Example of Classifying and Learning; 4. Summary; Acknowledgements; References.
|
505 |
8 |
|
|a Chapter 3. Learning Representative Exemplars of Concepts:An Initial Case StudyAbstract; 1. Introduction; 2. Exemplar Models; 3. Experiment; 4. Experimental Results; 5. Discussion; Acknowledgements; References; CHAPTER4. DECISION TREES AS PROBABILISTIC CLASSIFIERS; Abstract; 1. Introduction; 2. Imperfect Leaves; 3. Unknown and Imprecise Attribute Values; 4. Soft Threshholds; 5� Conclusion; Acknowledgements; References; Chapter 5. Conceptual Clustering, Learning from Examples, and Inference; Abstract; 1� Introduction; 2. An Overview of COBWEB; 3. Classification and Inference.
|
505 |
8 |
|
|a 4. A Note on Inference and Understandability5. Concluding Remarks; Acknowledgements; References; Chapter 6. How toLearn Imprecise Concepts: A Method for Employing a Two-Tiered Knowledge Representation in Learning; Abstract; 1. Introduction; 2. Two-tiered Concept Representation; 3. Using and Learning Concepts with Two-tiered Representation; 4. An Experiment on Learning Decision Rules in Medical Domains; 4. Contusion; Ackowledgements; References; Chapter 7. Quasi-Darwinian Learning in a Classifier System; Abstract; 1. Introduction; 2. A Simple Classifier System; 3. A Learning Example.
|
505 |
8 |
|
|a 4. ConclusionReferences; CHAPTER 8. MORE ROBUST CONCEPT LEARNINGUSING DYNAMICALLY -- VARIABLE BIAS; Abstract; 1. Introduction; 2. Bias Flexibility and Binding Times; 3. A Closer Look at the VBMS; 4. Implementation, Experiment, and Outlook; 5. Summary and Remarks; Acknowledgements; References; Chapter 9. Incremental Adjustment of Representations for Learning; Abstract; 1. Introduction; 2. Related Work; 3. The STAGGER System; 4. Interactions and Bias; 5. Discussion; Acknowledgements; References; Chapter 10. Concept Learning in Context; Abstract; 1. Introduction and Motivation.
|
505 |
8 |
|
|a 2. MetaLEX's Learning Task3. MetaLEX's Learning Method; 4. Experimental Results; 5. Discussion; 6. Summary; Acknowledgments; References; Chapter 11. Strategy Learning with MultilayerConnectionist Representations; Abstract; 1. Introduction; 2. The Pole-Balancing Task; 3� Specification of the Connectionist Learning System; 4. Results; 5. Discussion; 6. Conclusion; Acknowledgements; References; Chapter 12. Learning a Preference Predicate; Abstract; 1. Introduction; 2� Hypothesis; 3. Best-First Search Revisited; 4. Discussion; References.
|
520 |
|
|
|a Proceedings of the Fourth International Workshop on MACHINE LEARNING.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Machine learning
|v Congresses.
|
650 |
|
6 |
|a Apprentissage automatique
|0 (CaQQLa)201-0131435
|v Congr�es.
|0 (CaQQLa)201-0378219
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Machine learning
|2 fast
|0 (OCoLC)fst01004795
|
655 |
|
2 |
|a Congress
|0 (DNLM)D016423
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|0 (CStmoGRI)aatgf300027316
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|0 (OCoLC)fst01423772
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congr�es.
|2 rvmgf
|0 (CaQQLa)RVMGF-000001049
|
700 |
1 |
|
|a Langley, Pat,
|e editor.
|
700 |
1 |
|
|a Ehrlich, Caroline,
|e contributor.
|
710 |
2 |
|
|a American Association for Artificial Intelligence.
|
776 |
0 |
8 |
|i Print version:
|a International Workshop on Machine Learning (4th : 1987 : Irvine, Calif.).
|t Proceedings of the Fourth International Workshop on Machine Learning
|z 0934613419
|w (DLC) 87003803
|w (OCoLC)15630877
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780934613415
|z Texto completo
|