Cargando…

Machine learning : a theoretical approach /

This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic mo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Natarajan, Balas Kausik
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Mateo, CA : M. Kaufmann, �1991.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892068012
003 OCoLC
005 20231120111756.0
006 m o d
007 cr cnu---unuuu
008 141003s1991 caua ob 001 0 eng d
010 |z  91014432  
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d E7B  |d YDXCP  |d EBLCP  |d DEBSZ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d LUN  |d UMI  |d SFB  |d VT2  |d OCLCF  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d INARC 
019 |a 897645833  |a 935246294  |a 1152990350  |a 1175728476  |a 1195891329  |a 1392427452 
020 |a 9780080510538  |q (electronic bk.) 
020 |a 0080510531  |q (electronic bk.) 
020 |a 9781493305858 
020 |a 1493305859 
020 |a 1322465592 
020 |a 9781322465593 
020 |z 1558601481 
020 |z 9781558601482 
035 |a (OCoLC)892068012  |z (OCoLC)897645833  |z (OCoLC)935246294  |z (OCoLC)1152990350  |z (OCoLC)1175728476  |z (OCoLC)1195891329  |z (OCoLC)1392427452 
050 4 |a Q325.5  |b .N38 1991eb 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/1  |2 22 
084 |a 54.72  |2 bcl 
100 1 |a Natarajan, Balas Kausik. 
245 1 0 |a Machine learning :  |b a theoretical approach /  |c Balas K. Natarajan. 
264 1 |a San Mateo, CA :  |b M. Kaufmann,  |c �1991. 
300 |a 1 online resource (x, 217 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 207-214) and index. 
520 |a This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation is intended for a broad audience--the author's ability to motivate and pace discussions for beginners has been praised by reviewers. Each chapter contains numerous examples and exercises, as well as a useful summary of important results. An excellent introduction to the area, suitable either for a first course, or as a component in general machine learning and advanced AI courses. Also an important reference for AI researchers. 
588 0 |a Print version record. 
505 0 |a Front Cover; Copyright Page; Machine Learning: A Theoretical Approach; Table of Contents; Chapter 1. Introduction; 1.1 Bibliographic Notes; Chapter 2. Learning Concepts on Countable Domains; 2.1 Preliminaries; 2.2 Sample Complexity; 2.3 Dimension and Learnability; 2.4 Learning Concepts with One-Sided Error; 2.5 Summary; 2.6 Appendix; 2.7 Exercises; 2.8 Bibliographic Notes; Chapter 3. Time Complexity of Concept Learning; 3.1 Preliminaries; 3.2 Polynomial-Time Learnability; 3.3 Occam's Razor; 3.4 One-Sided Error; 3.5 Hardness Results; 3.6 Summary; 3.7 Appendix; 3.8 Exercises. 
505 8 |a 3.9 Bibliographic NotesChapter 4. Learning Concepts on Uncountable Domains; 4.1 Preliminaries; 4.2 Uniform Convergence and Learnability; 4.3 Summary; 4.4 Appendix; 4.5 Exercises; 4.6 Bibliographic Notes; Chapter 5. Learning Functions; 5.1 Learning Functions on Countable Domains; 5.2 Learning Functions on Uncountable Domains; 5.3 Summary; 5.4 Exercises; 5.5 Bibliographic Notes; Chapter 6. Finite Automata; 6.1 Preliminaries; 6.2 A Modified Framework.; 6.3 Summary; 6.4 Exercises; 6.5 Bibliographic Notes; Chapter 7. Neural Networks; 7.1 Preliminaries; 7.2 Bounded-Precision Networks. 
505 8 |a 7.3 Efficiency Issues7.4 Summary; 7.5 Appendix; 7.6 Exercises; 7.7 Bibliographie Notes; Chapter 8. Generalizing the Learning Model; 8.1 Preliminaries; 8.2 Sample Complexity; 8.3 Time Complexity; 8.4 Prediction; 8.5 Boosting; 8.6 Summary; 8.7 Exercises; 8.8 Bibliographic Notes; Chapter 9. Conclusion; 9.1 The Paradigm; 9.2 Recent and Future Directions; 9.3 An AI Perspective; Index. 
546 |a English. 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Maschinelles Lernen  |2 gnd  |0 (DE-588)4193754-5 
650 1 7 |a Machine-learning.  |2 gtt 
650 7 |a Apprentissage automatique.  |2 ram 
776 0 8 |i Print version:  |a Natarajan, Balas Kausik.  |t Machine learning  |z 1558601481  |w (DLC) 91014432  |w (OCoLC)23582976 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080510538  |z Texto completo