Cargando…

Elliptic functions: a primer /

Elliptic Functions: A Primer defines and describes what is an elliptic function, attempts to have a more elementary approach to them, and drastically reduce the complications of its classic formulae; from which the book proceeds to a more detailed study of the subject while being reasonably complete...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neville, Eric Harold, 1889-1961
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1971]
Edición:First edition].
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892067814
003 OCoLC
005 20231120111755.0
006 m o d
007 cr cnu---unuuu
008 141003s1971 enka o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d OCLCA  |d E7B  |d YDXCP  |d EBLCP  |d HEBIS  |d DEBSZ  |d MERUC  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCA  |d LUN  |d OCLCQ  |d LIP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898771878  |a 903965292 
020 |a 9781483151915  |q (electronic bk.) 
020 |a 1483151913  |q (electronic bk.) 
020 |z 0080163696 
020 |z 9780080163697 
035 |a (OCoLC)892067814  |z (OCoLC)898771878  |z (OCoLC)903965292 
050 4 |a QA343  |b .N49 1971eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.983  |2 22 
084 |a SK 750  |2 rvk 
100 1 |a Neville, Eric Harold,  |d 1889-1961. 
245 1 0 |a Elliptic functions: a primer /  |c prepared for publication by W.J. Langford. 
250 |a First edition]. 
264 1 |a Oxford ;  |a New York :  |b Pergamon Press,  |c [1971] 
300 |a 1 online resource (xiii, 198 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Elliptic Functions: A Primer defines and describes what is an elliptic function, attempts to have a more elementary approach to them, and drastically reduce the complications of its classic formulae; from which the book proceeds to a more detailed study of the subject while being reasonably complete in itself. 
588 0 |a Print version record. 
505 0 |a Front Cover; Elliptic Functions: A Primer; Copyright Page ; Table of Contents; EDITOR'S PREFACE; LIST OF TABLES; Chapter 1. Double periodicity; Equivalent bases; Chapter 2. Lattices; Chapter 3. Multiples and sub-multiples of periods; Chapter 4. Fundamental parallelogram; Liouville's theorem-a doubly periodic function without accessible singularities is a constant; Chapter 5. Definition of an elliptic function; A rational function of an elliptic function is an elliptic function; Chapter 6. An elliptic function (unless constant) has poles and zeros Identification of an elliptic function. 
505 8 |a (I) by poles and principal parts(ii) by poles and zeros; Chapter 7. Residue sum of an elliptic function is zero; Chapter 8. Derivative of an elliptic function; Order of an elliptic function; No functions of the first order; Chapter 9. Additive pseudoperiodicity; Integration of an elliptic function with zero residues; Signature; Evaluation of A� -- B(\ for a function additively pseudoperiodic in �a, �a with moduli A, �A; Chapter 10. Pole-sum of an elliptic function; Chapter 11. The mid-lattice points; Odd and even elliptic functions; Chapter 12. Construction of the function ... 
505 8 |a Chapter 13. Construction and periodicity of the Weierstrassian function ... Chapter 14. Zeros of..z; The constants ef, eg, eh; Construction of the primitive functions fj z, gj z, hj z; Chapter 15. Periodicity of the primitive functions; Primitive functions are odd functions with simple poles; Structure patterns and residue patterns; Double series for fj z; Chapter 16. Construction and pseudoperiodicity of ... ; The constants nf, ng, nh; Laurent series for ... ; Chapter 17. Construction of �oz ... 
505 8 |a Chapter 18. Construction, in terms of ... and ... of an elliptic function with assigned poles and principal partsExpression for ... ; Constant value of ... ; Chapter 19. Construction, in terms of �o�, of an elliptic function with assigned poles and zeros; Expression for ... ; Expression for the primitive function pjz; Chapter 20. Expression of an elliptic function in the form ... ; Chapter 21. Expression for.'2z in terms of.z; Evaluation of ... ; Chapter 22. Expression of an elliptic function in the form S ... ; Chapter 23. Elliptic functions on the same lattice are connected algebraically. 
505 8 |a Chapter 24. The six critical constants pqf2g + g2g + h2f =0; fgfh = gfhf; gr = vfg; Chapter 25. Quarter-period addition to the argument of a primitive function; The twelve elementary functions; pq z qp z = qp'wq; pqz qrz = pqwr, prz; Periods and poles of pq z; Relations between the squares of the elementary functions; Chapter 26. The functions pz and pqz as solutions of differential equations; Chapter 27. Copolar functions and simultaneous differential equations; Chapter 28. Addition theorems for pz and .z and .z; ... + fj'z/fjz; Chapter 29. Addition theorems for fjz, jfz and hgz. 
650 0 |a Elliptic functions. 
650 6 |a Fonctions elliptiques.  |0 (CaQQLa)201-0043693 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Elliptic functions  |2 fast  |0 (OCoLC)fst00908173 
650 7 |a Elliptische Funktion  |2 gnd  |0 (DE-588)4134665-8 
776 0 8 |i Print version:  |a Neville, Eric Harold, 1889-  |t Elliptic functions: a primer.  |b First edition]  |z 0080163696  |w (DLC) 78148488  |w (OCoLC)155096 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080163697  |z Texto completo