|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892067814 |
003 |
OCoLC |
005 |
20231120111755.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1971 enka o 000 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d OCLCA
|d E7B
|d YDXCP
|d EBLCP
|d HEBIS
|d DEBSZ
|d MERUC
|d OCLCQ
|d OCLCO
|d UKAHL
|d OCLCQ
|d OCLCA
|d LUN
|d OCLCQ
|d LIP
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898771878
|a 903965292
|
020 |
|
|
|a 9781483151915
|q (electronic bk.)
|
020 |
|
|
|a 1483151913
|q (electronic bk.)
|
020 |
|
|
|z 0080163696
|
020 |
|
|
|z 9780080163697
|
035 |
|
|
|a (OCoLC)892067814
|z (OCoLC)898771878
|z (OCoLC)903965292
|
050 |
|
4 |
|a QA343
|b .N49 1971eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.983
|2 22
|
084 |
|
|
|a SK 750
|2 rvk
|
100 |
1 |
|
|a Neville, Eric Harold,
|d 1889-1961.
|
245 |
1 |
0 |
|a Elliptic functions: a primer /
|c prepared for publication by W.J. Langford.
|
250 |
|
|
|a First edition].
|
264 |
|
1 |
|a Oxford ;
|a New York :
|b Pergamon Press,
|c [1971]
|
300 |
|
|
|a 1 online resource (xiii, 198 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Elliptic Functions: A Primer defines and describes what is an elliptic function, attempts to have a more elementary approach to them, and drastically reduce the complications of its classic formulae; from which the book proceeds to a more detailed study of the subject while being reasonably complete in itself.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Elliptic Functions: A Primer; Copyright Page ; Table of Contents; EDITOR'S PREFACE; LIST OF TABLES; Chapter 1. Double periodicity; Equivalent bases; Chapter 2. Lattices; Chapter 3. Multiples and sub-multiples of periods; Chapter 4. Fundamental parallelogram; Liouville's theorem-a doubly periodic function without accessible singularities is a constant; Chapter 5. Definition of an elliptic function; A rational function of an elliptic function is an elliptic function; Chapter 6. An elliptic function (unless constant) has poles and zeros Identification of an elliptic function.
|
505 |
8 |
|
|a (I) by poles and principal parts(ii) by poles and zeros; Chapter 7. Residue sum of an elliptic function is zero; Chapter 8. Derivative of an elliptic function; Order of an elliptic function; No functions of the first order; Chapter 9. Additive pseudoperiodicity; Integration of an elliptic function with zero residues; Signature; Evaluation of A� -- B(\ for a function additively pseudoperiodic in �a, �a with moduli A, �A; Chapter 10. Pole-sum of an elliptic function; Chapter 11. The mid-lattice points; Odd and even elliptic functions; Chapter 12. Construction of the function ...
|
505 |
8 |
|
|a Chapter 13. Construction and periodicity of the Weierstrassian function ... Chapter 14. Zeros of..z; The constants ef, eg, eh; Construction of the primitive functions fj z, gj z, hj z; Chapter 15. Periodicity of the primitive functions; Primitive functions are odd functions with simple poles; Structure patterns and residue patterns; Double series for fj z; Chapter 16. Construction and pseudoperiodicity of ... ; The constants nf, ng, nh; Laurent series for ... ; Chapter 17. Construction of �oz ...
|
505 |
8 |
|
|a Chapter 18. Construction, in terms of ... and ... of an elliptic function with assigned poles and principal partsExpression for ... ; Constant value of ... ; Chapter 19. Construction, in terms of �o�, of an elliptic function with assigned poles and zeros; Expression for ... ; Expression for the primitive function pjz; Chapter 20. Expression of an elliptic function in the form ... ; Chapter 21. Expression for.'2z in terms of.z; Evaluation of ... ; Chapter 22. Expression of an elliptic function in the form S ... ; Chapter 23. Elliptic functions on the same lattice are connected algebraically.
|
505 |
8 |
|
|a Chapter 24. The six critical constants pqf2g + g2g + h2f =0; fgfh = gfhf; gr = vfg; Chapter 25. Quarter-period addition to the argument of a primitive function; The twelve elementary functions; pq z qp z = qp'wq; pqz qrz = pqwr, prz; Periods and poles of pq z; Relations between the squares of the elementary functions; Chapter 26. The functions pz and pqz as solutions of differential equations; Chapter 27. Copolar functions and simultaneous differential equations; Chapter 28. Addition theorems for pz and .z and .z; ... + fj'z/fjz; Chapter 29. Addition theorems for fjz, jfz and hgz.
|
650 |
|
0 |
|a Elliptic functions.
|
650 |
|
6 |
|a Fonctions elliptiques.
|0 (CaQQLa)201-0043693
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Elliptic functions
|2 fast
|0 (OCoLC)fst00908173
|
650 |
|
7 |
|a Elliptische Funktion
|2 gnd
|0 (DE-588)4134665-8
|
776 |
0 |
8 |
|i Print version:
|a Neville, Eric Harold, 1889-
|t Elliptic functions: a primer.
|b First edition]
|z 0080163696
|w (DLC) 78148488
|w (OCoLC)155096
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780080163697
|z Texto completo
|