Cargando…

Random matrices /

Since the publication of Random Matrices (Academic Press, 1967) so many new results have emerged both in theory and in applications, that this edition is almost completely revised to reflect the developments. For example, the theory of matrices with quaternion elements was developed to compute certa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mehta, M. L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Academic Press, �1991.
Edición:Revised and enlarged second edition.
Colección:Pure and Applied Mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892067473
003 OCoLC
005 20231120111752.0
006 m o d
007 cr cnu---unuuu
008 141003s1991 maua ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d YDXCP  |d EBLCP  |d DEBSZ  |d COO  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898422477 
020 |a 9781483295954  |q (electronic bk.) 
020 |a 1483295958  |q (electronic bk.) 
020 |z 0124880517 
020 |z 9780124880511 
035 |a (OCoLC)892067473  |z (OCoLC)898422477 
050 4 |a QC174.45  |b .M444 1991eb 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.1/2  |2 22 
084 |a 31.70  |2 bcl 
084 |a 33.25  |2 bcl 
084 |a *60B15  |2 msc 
084 |a 15A52  |2 msc 
084 |a 60-01  |2 msc 
084 |a 81Q99  |2 msc 
100 1 |a Mehta, M. L. 
245 1 0 |a Random matrices /  |c Madan Lal Mehta. 
250 |a Revised and enlarged second edition. 
264 1 |a Boston :  |b Academic Press,  |c �1991. 
300 |a 1 online resource (xviii, 562 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Pure and Applied Mathematics 
504 |a Includes bibliographical references (pages 545-554) and indexes. 
520 |a Since the publication of Random Matrices (Academic Press, 1967) so many new results have emerged both in theory and in applications, that this edition is almost completely revised to reflect the developments. For example, the theory of matrices with quaternion elements was developed to compute certain multiple integrals, and the inverse scattering theory was used to derive asymptotic results. The discovery of Selberg's 1944 paper on a multiple integral also gave rise to hundreds of recent publications. 
588 0 |a Print version record. 
505 0 |a Front Cover; Random Matrices: Revised and Enlarged; Copyright Page; Table of Contents; Preface to the Second Edition; Acknowledgments; Preface to the First Edition; Chapter 1. Introduction; 1.1. Random Matrices in Nuclear Physics; 1.2. Random Matrices in Other Branches of Knowledge; 1.3. A Summary of Statistical Facts about Nuclear Energy Levels; 1.4. Definition of a Suitable Function for the Study of Level Correlations; 1.5. Wigner Surmise; 1.6. Electromagnetic Properties of Small Metallic Particles; 1.7. Analysis of Experimental Nuclear Levels; 1.8. The Zeros of the Riemann Zeta Function. 
505 8 |a 1.9. Things Worth Consideration, but Not Treated in This BookChapter 2. Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements; 2.1. Preliminaries; 2.2. Time-Reversal Invariance; 2.3. Gaussian Orthogonal Ensemble; 2.4. Gaussian Symplectic Ensemble; 2.5. Gaussian Unitary Ensemble; 2.6. Joint Probability Density Function for Matrix Elements; 2.7. Another Gaussian Ensemble of Hermitian Matrices; 2.8. Antisymmetric Hermitian Matrices; Summary of Chapter 2; Chapter 3. Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues. 
505 8 |a 3.1. Orthogonal Ensemble3.2. Symplectic Ensemble; 3.3. Unitary Ensemble; 3.4. Ensemble of Antisymmetric Hermitian Matrices; 3.5. Another Gaussian Ensemble of Hermitian Matrices; 3.6. Random Matrices and Information Theory; Summary of Chapter 3; Chapter 4. Gaussian Ensembles. Level Density; 4.1. The Partition Function; 4.2. The Asymptotic Formula for the Level Density. Gaussian Ensembles; 4-3. The Asymptotic Formula for the Level Density. Other Ensembles; Summary of Chapter 4; Chapter 5. Gaussian Unitary Ensemble; 5.1. Generalities; 5.2. The n-Point Correlation Function; 5.3. Level Spacings. 
505 8 |a 5.4. Several Consecutive Spacings5.5. Some Remarks; Summary of Chapter 5; Chapter 6. Gaussian Orthogonal Ensemble; 6.1. Generalities; 6.2. Quaternion Matrices; 6.3. The Probability Density Function as a Quaternion Determinant; 6.4. The Correlation and Cluster Functions; 6.5. Level Spacings. Integration over Alternate Variables; 6.6. Several Consecutive Spacings: n = 2r; 6.7. Several Consecutive Spacings: n = 2r -- 1; 6.8. Bounds for the Distribution Function of the Spacings; Summary of Chapter 6; Chapter 7. Gaussian Symplectic Ensemble; 7.1. A Quaternion Determinant. 
505 8 |a 7.2. Correlation and Cluster Functions7.3. Level Spacings; Summary of Chapter 7; Chapter 8. Gaussian Ensembles: Brownian Motion Model; 8.1. Stationary Ensembles; 8.2. Nonstationary Ensembles; 8.3. Some Ensemble Averages; Summary of Chapter 8; Chapter 9. Circular Ensembles; 9.1. The Orthogonal Ensemble; 9.2. Symplectic Ensemble; 9.3. Unitary Ensemble; 9.4. The Joint Probability Density Function for the Eigenvalues; Summary of Chapter 9; Chapter 10. Circular Ensembles (Continued); 10.1. Unitary Ensemble. Correlation and Cluster Functions; 10.2. Unitary Ensemble. Level Spacings. 
650 0 |a Energy levels (Quantum mechanics)  |x Statistical methods. 
650 0 |a Random matrices. 
650 6 |a Niveaux d'�energie (M�ecanique quantique)  |0 (CaQQLa)201-0011955  |x M�ethodes statistiques.  |0 (CaQQLa)201-0373903 
650 6 |a Matrices al�eatoires.  |0 (CaQQLa)201-0148338 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Energy levels (Quantum mechanics)  |x Statistical methods  |2 fast  |0 (OCoLC)fst00910187 
650 7 |a Random matrices  |2 fast  |0 (OCoLC)fst01089803 
650 7 |a Energieniveau  |2 gnd  |0 (DE-588)4152225-4 
650 7 |a Quantenmechanik  |2 gnd  |0 (DE-588)4047989-4 
650 7 |a Stochastische Matrix  |2 gnd  |0 (DE-588)4057624-3 
650 7 |a Matrices al�eatoires.  |2 ram 
650 7 |a Matrices, M�ecanique des  |x Mod�eles math�ematiques.  |2 ram 
650 7 |a Perturbation (th�eorie quantique)  |2 ram 
650 7 |a Niveaux d'�energie (th�eorie quantique)  |x M�ethodes statistiques.  |2 ram 
776 0 8 |i Print version:  |a Mehta, M.L.  |t Random matrices.  |b Revised and enlarged second edition  |z 0124880517  |w (DLC) 90000257  |w (OCoLC)21197384 
830 0 |a Pure and Applied Mathematics. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780124880511  |z Texto completo