MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892067457
003 OCoLC
005 20231120111752.0
006 m o d
007 cr cnu---unuuu
008 141003s1988 caua ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d E7B  |d OCLCE  |d EBLCP  |d IDEBK  |d CDX  |d DEBSZ  |d OCLCO  |d DEBBG  |d YDXCP  |d MERUC  |d OCLCQ  |d UKAHL  |d MM9  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 898769214  |a 902961356  |a 1100846781 
020 |a 9781483259147  |q (electronic bk.) 
020 |a 1483259145  |q (electronic bk.) 
020 |z 0126374759 
020 |z 9780126374759 
035 |a (OCoLC)892067457  |z (OCoLC)898769214  |z (OCoLC)902961356  |z (OCoLC)1100846781 
042 |a dlr 
050 4 |a QA372  |b .S4148 1988eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.3/5  |2 22 
084 |a 31.44  |2 bcl 
084 |a 31.45  |2 bcl 
084 |a 31.76  |2 bcl 
084 |a *65-01  |2 msc 
084 |a 34-04  |2 msc 
084 |a 35-04  |2 msc 
084 |a 65F05  |2 msc 
084 |a 65Lxx  |2 msc 
084 |a 65Mxx  |2 msc 
084 |a 65Nxx  |2 msc 
084 |a 65Y05  |2 msc 
100 1 |a Sewell, Granville. 
245 1 4 |a The numerical solution of ordinary and partial differential equations /  |c Granville Sewell. 
264 1 |a San Diego, CA :  |b Academic Press :  |b Harcourt Brace Jovanovich,  |c �1988. 
300 |a 1 online resource (xii, 271 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 267-268) and index. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; The Numerical Solution of Ordinary and Partial Differential Equations; Copyright Page; Table of Contents; Preface; Chapter 0. Direct Solution of Linear Systems; 0.0 Introduction; 0.1 General Linear Systems; 0.2 Systems Requiring No Pivoting; 0.3 The LU Decomposition; 0.4 Banded Linear Systems; 0.5 Sparse Direct Methods; 0.6 Problems; Chapter 1. Initial Value Ordinary Differential Equations; 1.0 Introduction; 1.1 Euler's Method; 1.2 Truncation Error, Stability and Convergence; 1.3 Multistep Methods; 1.4 Adams Multistep Methods; 1.5 Backward Difference Methods for Stiff Problems. 
505 8 |a 1.6 Runge-Kutta Methods1.7 Problems; Chapter 2. The Initial Value Diffusion Problem; 2.0 Introduction; 2.1 An Explicit Method; 2.2 Implicit Methods; 2.3 A One-Dimensional Example; 2.4 Multi-Dimensional Problems; 2.5 A Diffusion-Reaction Example; 2.6 Problems; Chapter 3. The Initial Value Transport and Wave Problems; 3.0 Introduction; 3.1 Explicit Methods for the Transport Problem; 3.2 The Method of Characteristics; 3.3 An Explicit Method for the Wave Equation; 3.4 A Damped Wave Example; 3.5 Problems; Chapter 4. Boundary Value Problems; 4.0 Introduction; 4.1 Finite Difference Methods. 
505 8 |a 4.2 A Nonlinear Example4.3 A Singular Example; 4.4 Shooting Methods; 4.5 Multi-Dimensional Problems; 4.6 Successive Over-Relaxation; 4.7 Successive Over-Relaxation Examples; 4.8 The Conjugate Gradient Method; 4.9 Systems of Differential Equations; 4.10 The Eigenvalue Problem; 4.11 The Inverse Power Method; 4.12 Problems; Chapter 5. The Finite Element Method; 5.0 Introduction; 5.1 The Galerkin Method for Boundary Value Problems; 5.2 An Example Using Piecewise Linear Trial Functions; 5.3 An Example Using Cubic Hermite Trial Functions; 5.4 A Singular Example; 5.5 Linear Triangular Elements. 
505 8 |a 5.6 Examples Using Triangular Elements5.7 Time-Dependent Problems; 5.8 A One-Dimensional Example; 5.9 A Time-Dependent Example Using Triangular Elements; 5.10 The Eigenvalue Problem; 5.11 Eigenvalue Examples; 5.12 Problems; Appendix 1: The Fourier Stability Method; Appendix 2: Parallel Algorithms; References; Index. 
520 |a The Numerical Solution of Ordinary and Partial Differential Equations. 
650 0 |a Differential equations  |x Numerical solutions  |x Data processing. 
650 0 |a Differential equations, Partial  |x Numerical solutions  |x Data processing. 
650 6 |a �Equations diff�erentielles  |0 (CaQQLa)201-0013417  |x Solutions num�eriques  |0 (CaQQLa)201-0013417  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a �Equations aux d�eriv�ees partielles  |0 (CaQQLa)201-0041240  |x Solutions num�eriques  |0 (CaQQLa)201-0041240  |x Informatique.  |0 (CaQQLa)201-0380011 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations  |x Numerical solutions  |x Data processing  |2 fast  |0 (OCoLC)fst00893454 
650 7 |a Differential equations, Partial  |x Numerical solutions  |x Data processing  |2 fast  |0 (OCoLC)fst00893490 
650 7 |a Equations diff�erentielles  |x solutions num�eriques.  |2 ram 
650 7 |a Equations aux d�eriv�ees partielles  |x Solutions num�eriques.  |2 ram 
653 |a Differential equations  |a Numerical methods 
776 0 8 |i Print version:  |a Sewell, Granville.  |t Numerical solution of ordinary and partial differential equations  |z 0126374759  |w (DLC) 87028915  |w (OCoLC)17106255 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780126374759  |z Texto completo