|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892067457 |
003 |
OCoLC |
005 |
20231120111752.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1988 caua ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d E7B
|d OCLCE
|d EBLCP
|d IDEBK
|d CDX
|d DEBSZ
|d OCLCO
|d DEBBG
|d YDXCP
|d MERUC
|d OCLCQ
|d UKAHL
|d MM9
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 898769214
|a 902961356
|a 1100846781
|
020 |
|
|
|a 9781483259147
|q (electronic bk.)
|
020 |
|
|
|a 1483259145
|q (electronic bk.)
|
020 |
|
|
|z 0126374759
|
020 |
|
|
|z 9780126374759
|
035 |
|
|
|a (OCoLC)892067457
|z (OCoLC)898769214
|z (OCoLC)902961356
|z (OCoLC)1100846781
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA372
|b .S4148 1988eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.3/5
|2 22
|
084 |
|
|
|a 31.44
|2 bcl
|
084 |
|
|
|a 31.45
|2 bcl
|
084 |
|
|
|a 31.76
|2 bcl
|
084 |
|
|
|a *65-01
|2 msc
|
084 |
|
|
|a 34-04
|2 msc
|
084 |
|
|
|a 35-04
|2 msc
|
084 |
|
|
|a 65F05
|2 msc
|
084 |
|
|
|a 65Lxx
|2 msc
|
084 |
|
|
|a 65Mxx
|2 msc
|
084 |
|
|
|a 65Nxx
|2 msc
|
084 |
|
|
|a 65Y05
|2 msc
|
100 |
1 |
|
|a Sewell, Granville.
|
245 |
1 |
4 |
|a The numerical solution of ordinary and partial differential equations /
|c Granville Sewell.
|
264 |
|
1 |
|a San Diego, CA :
|b Academic Press :
|b Harcourt Brace Jovanovich,
|c �1988.
|
300 |
|
|
|a 1 online resource (xii, 271 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references (pages 267-268) and index.
|
588 |
0 |
|
|a Print version record.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
0 |
|
|a Front Cover; The Numerical Solution of Ordinary and Partial Differential Equations; Copyright Page; Table of Contents; Preface; Chapter 0. Direct Solution of Linear Systems; 0.0 Introduction; 0.1 General Linear Systems; 0.2 Systems Requiring No Pivoting; 0.3 The LU Decomposition; 0.4 Banded Linear Systems; 0.5 Sparse Direct Methods; 0.6 Problems; Chapter 1. Initial Value Ordinary Differential Equations; 1.0 Introduction; 1.1 Euler's Method; 1.2 Truncation Error, Stability and Convergence; 1.3 Multistep Methods; 1.4 Adams Multistep Methods; 1.5 Backward Difference Methods for Stiff Problems.
|
505 |
8 |
|
|a 1.6 Runge-Kutta Methods1.7 Problems; Chapter 2. The Initial Value Diffusion Problem; 2.0 Introduction; 2.1 An Explicit Method; 2.2 Implicit Methods; 2.3 A One-Dimensional Example; 2.4 Multi-Dimensional Problems; 2.5 A Diffusion-Reaction Example; 2.6 Problems; Chapter 3. The Initial Value Transport and Wave Problems; 3.0 Introduction; 3.1 Explicit Methods for the Transport Problem; 3.2 The Method of Characteristics; 3.3 An Explicit Method for the Wave Equation; 3.4 A Damped Wave Example; 3.5 Problems; Chapter 4. Boundary Value Problems; 4.0 Introduction; 4.1 Finite Difference Methods.
|
505 |
8 |
|
|a 4.2 A Nonlinear Example4.3 A Singular Example; 4.4 Shooting Methods; 4.5 Multi-Dimensional Problems; 4.6 Successive Over-Relaxation; 4.7 Successive Over-Relaxation Examples; 4.8 The Conjugate Gradient Method; 4.9 Systems of Differential Equations; 4.10 The Eigenvalue Problem; 4.11 The Inverse Power Method; 4.12 Problems; Chapter 5. The Finite Element Method; 5.0 Introduction; 5.1 The Galerkin Method for Boundary Value Problems; 5.2 An Example Using Piecewise Linear Trial Functions; 5.3 An Example Using Cubic Hermite Trial Functions; 5.4 A Singular Example; 5.5 Linear Triangular Elements.
|
505 |
8 |
|
|a 5.6 Examples Using Triangular Elements5.7 Time-Dependent Problems; 5.8 A One-Dimensional Example; 5.9 A Time-Dependent Example Using Triangular Elements; 5.10 The Eigenvalue Problem; 5.11 Eigenvalue Examples; 5.12 Problems; Appendix 1: The Fourier Stability Method; Appendix 2: Parallel Algorithms; References; Index.
|
520 |
|
|
|a The Numerical Solution of Ordinary and Partial Differential Equations.
|
650 |
|
0 |
|a Differential equations
|x Numerical solutions
|x Data processing.
|
650 |
|
0 |
|a Differential equations, Partial
|x Numerical solutions
|x Data processing.
|
650 |
|
6 |
|a �Equations diff�erentielles
|0 (CaQQLa)201-0013417
|x Solutions num�eriques
|0 (CaQQLa)201-0013417
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a �Equations aux d�eriv�ees partielles
|0 (CaQQLa)201-0041240
|x Solutions num�eriques
|0 (CaQQLa)201-0041240
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations
|x Numerical solutions
|x Data processing
|2 fast
|0 (OCoLC)fst00893454
|
650 |
|
7 |
|a Differential equations, Partial
|x Numerical solutions
|x Data processing
|2 fast
|0 (OCoLC)fst00893490
|
650 |
|
7 |
|a Equations diff�erentielles
|x solutions num�eriques.
|2 ram
|
650 |
|
7 |
|a Equations aux d�eriv�ees partielles
|x Solutions num�eriques.
|2 ram
|
653 |
|
|
|a Differential equations
|a Numerical methods
|
776 |
0 |
8 |
|i Print version:
|a Sewell, Granville.
|t Numerical solution of ordinary and partial differential equations
|z 0126374759
|w (DLC) 87028915
|w (OCoLC)17106255
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780126374759
|z Texto completo
|