|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn892067106 |
003 |
OCoLC |
005 |
20231120111750.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
141003s1975 nyu ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d N$T
|d OCLCE
|d E7B
|d EBLCP
|d IDEBK
|d DEBSZ
|d OCLCO
|d DEBBG
|d YDXCP
|d OCLCQ
|d OCLCO
|d MERUC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VLY
|d LUN
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 898769102
|a 899751000
|a 1100861860
|a 1162482850
|
020 |
|
|
|a 9781483262451
|q (electronic bk.)
|
020 |
|
|
|a 1483262456
|q (electronic bk.)
|
020 |
|
|
|z 0124599508
|
020 |
|
|
|z 9780124599505
|
035 |
|
|
|a (OCoLC)892067106
|z (OCoLC)898769102
|z (OCoLC)899751000
|z (OCoLC)1100861860
|z (OCoLC)1162482850
|
042 |
|
|
|a dlr
|
050 |
|
4 |
|a QA55
|b .L96 1975eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515
|2 22
|
084 |
|
|
|a SK 470
|2 rvk
|
084 |
|
|
|a 31.43
|2 bcl
|
100 |
1 |
|
|a Luke, Yudell L.
|
245 |
1 |
0 |
|a Mathematical functions and their approximations /
|c Yudell L. Luke.
|
264 |
|
1 |
|a New York :
|b Academic Press,
|c 1975.
|
300 |
|
|
|a 1 online resource (xvii, 568 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a An updated version of part of Handbook of mathematical functions with formulas, graphs, and mathematical tables, edited by M. Abramowitz and I.A. Stegun.
|
504 |
|
|
|a Includes bibliographical references (pages 517-544).
|
500 |
|
|
|a Includes indexes.
|
588 |
0 |
|
|a Print version record.
|
506 |
|
|
|3 Use copy
|f Restrictions unspecified
|2 star
|5 MiAaHDL
|
533 |
|
|
|a Electronic reproduction.
|b [Place of publication not identified] :
|c HathiTrust Digital Library,
|d 2011.
|5 MiAaHDL
|
538 |
|
|
|a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
|u http://purl.oclc.org/DLF/benchrepro0212
|5 MiAaHDL
|
583 |
1 |
|
|a digitized
|c 2011
|h HathiTrust Digital Library
|l committed to preserve
|2 pda
|5 MiAaHDL
|
505 |
8 |
|
|6 880-01
|a CHAPTER III. ELEMENTARY FUNCTIONS3.1. Logarithmic Functions; 3.2. EXPONENTIAL FUNCTION; 3.3. Circular and Hyperbolic Functions; 3.4. Inverse Circular and Hyperbolic Functions; 3.5. Bibliographic and Numerical Data; CHAPTER IV. INCOMPLETE GAMMA FUNCTIONS; 4.1. Definitions and Series Expansions; 4.2. Differential Equations and DifferenceEquations; 4.3. PADE APPROXIMATIONS; 4.4. INEQUALITIES; 4.5. Notes on the Computation of the IncompleteGamma Function; 4.7. COSINE AND SINE INTEGRALS; 4.8. ERROR FUNCTIONS; 4.9. FRESNEL INTEGRALS; 4.10 BIBLIOGRAPHIC AND NUMERICAL DATA.
|
505 |
8 |
|
|a CHAPTER V. THE GENERALIZED HYPERGEOMETRIC FUNCTION pFQAND THE G-FUNCTION5.1. Introduction; 5.2. The pFq; 5.3. The G-Function; 5.4. The Confluence Principle; 5.5. Multiplication Theorems; 5.6. INTEGRALS INVOLVING G-FUNCTIONS; 5.7. Differential Equations; 5.8. Series of G-Functions; 5.9. Asymptotic Expansions; 5.10. Expansions in Series of Generalized Jacobi, Generalized Laguerre and ChebyshevPolynomials; 5.11. Expansions in Series of Bessel Functions; 5.12. Polynomial and Rational Approximations.
|
505 |
8 |
|
|a 5.13 Recurrence Formulas for Polynomials and Functions Occurring in Approximations to Generalized HypergeometricFunctions5.14. INEQUALITIES; CHAPTER VI. THE GAUSSIAN HYPERGEOMETRIC FUNCTION; 6.1. Introduction; 6.2. Elementary Properties; 6.3. Differential Equations; 6.4. Kummer Solutions and Transformation Formulae; 6.5. Analytic Continuation; 6.6. The Complete Solution and Wronskians; 6.7. Quadratic Transformations; 6.8. The 2F1 for Special Values of the Argument; 6.9. Expansion in Series of Chebyshev Polynomials; 6.10. PADE APPROXIMATIONS FOR 2F1 (1; o; P+1; -1/Z) 275; 6.11. Inequalities.
|
505 |
8 |
|
|a 6.12. Bibliographic and Numerical DataCHAPTER VII. THE CONFLUENT HYPERGEOMETRIC FUNCTION; 7.1. Introduction; 7.2. Integral Representations; 7.3. Elementary Relations; 7.4. Differential Equations; 7.5. The Complete Solution and Wronskians; 7.6. Asymptotic Expansions; 7.7. Expansions in Series of Chebyshev Polynomials; 7.8. Expansions in Series of Bessel Functions; 7.9. Inequalities; 7.1 0. Other Notations and Related Functions; 7.11. Bibliographic and Numerical Data; CHAPTER VIII. IDENTIFICATION OF THE pFQ AND G-FONCTIONS WITH THE SPECIALFUNCTIONS; 8.1. Introduction.
|
520 |
|
|
|a Mathematical Functions and Their Approximations.
|
546 |
|
|
|a English.
|
650 |
|
0 |
|a Mathematics
|v Tables.
|
650 |
|
6 |
|a Fonctions (Math�ematiques)
|0 (CaQQLa)201-0003663
|x Tables.
|
650 |
|
6 |
|a Math�ematiques
|0 (CaQQLa)201-0068291
|x Tables.
|
650 |
|
6 |
|a Math�ematiques
|v Tables.
|0 (CaQQLa)201-0004512
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Mathematics
|2 fast
|0 (OCoLC)fst01012163
|
650 |
|
7 |
|a Approximation
|2 gnd
|0 (DE-588)4002498-2
|
650 |
|
7 |
|a Funktion
|g Mathematik
|2 gnd
|0 (DE-588)4071510-3
|
650 |
|
7 |
|a Spezielle Funktion
|2 gnd
|0 (DE-588)4182213-4
|
655 |
|
2 |
|a Tables
|0 (DNLM)D020501
|
655 |
|
7 |
|a tables (documents)
|2 aat
|0 (CStmoGRI)aatgf300027364
|
655 |
|
7 |
|a Tables (Data)
|2 fast
|0 (OCoLC)fst01919974
|
655 |
|
7 |
|a Tables
|2 fast
|0 (OCoLC)fst01423914
|
655 |
|
7 |
|a Tables (Data)
|2 lcgft
|
655 |
|
7 |
|a Tables (Donn�ees)
|2 rvmgf
|0 (CaQQLa)RVMGF-000001171
|
700 |
1 |
|
|a Abramowitz, Milton,
|d 1915-1958.
|t Handbook of mathematical functions with formulas, graphs, and mathematical tables.
|
776 |
0 |
8 |
|i Print version:
|a Luke, Yudell L.
|t Mathematical functions and their approximations
|z 0124599508
|w (DLC) 75022358
|w (OCoLC)1551377
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124599505
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Front Cover; Mathematical Functions andtheir Approximations; Copyright Page; Dedication; Table of Contens; PREFACE; CHAPTER I. THE GAMMA FUNCTION AND RELATED FUNCTIONS; 1.1. Definitions and Elementary Properties; 1 . 2 . Power Series and OtherSeries Expansions; 1.3. ASYMPTOTIC EXPANSIONS; 1.4. RATIONAL APPROXIMATIONS FOR ψ(z); 1.5. INEQUALITIES; 1.6. Bibliographic and Numerical Data; CHAPTER II. THE BINOMIAL FUNCTION; 2.1. Power Series; 2.2. Expansions in Series of Jacobi and Chebyshev Polynomials; 2.3. Expansions in Series of Bessel Functions; 2.4. Pad�e Approximations; 2.5. INEQUALITIES.
|