Cargando…

Finite elements for analysis and design /

The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Akin, J. E.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; San Diego [Calif.] : Academic Press, [1994]
Colección:Computational mathematics and applications.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Finite Elements for Analysis and Design; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1 Finite Element Methods; 1.2 Capabilities of FEA; 1.3 Outline of Finite Element Procedures; 1.4 Optimization Concepts; 1.5 References; Chapter 2. Mathematical Preliminaries; 2.1 Introduction; 2.2 Linear Spaces and Norms; 2.3 Sobolev Norms; 2.4 Self-Adjointness; 2.5 Weighted Residuals; 2.6 Essential Boundary Conditions; 2.7 Elliptic Boundary Value Problems; 2.8 References; Chapter 3. Variational Methods; 3.1 Introduction; 3.2 Structural Mechanics.
  • 3.3 Finite Element Analysis3.4 Continuous Elastic Bar; 3.5 Flux Recovery for an Element; 3.6 Thermal Loads on a Bar; 3.7 Heat Transfer in a Rod; 3.8 Gradient Estimates; 3.9 Element Validation; 3.10 Element Distortion; 3.11 Euler's Equations of Variational Calculus; 3.12 System Validation; 3.13 References; Chapter 4. Element Interpolation and Local Coordinates; 4.1 Introduction; 4.2 Linear Interpolation; 4.3 Quadratic Interpolation; 4.4 Lagrange Interpolation; 4.5 Hermitian Interpolation; 4.6 Hierarchical Interpolation; 4.7 Interpolation Error ; 4.8 References.
  • Chapter 5. One-Dimensional Integration5.1 Introduction; 5.2 Local Coordinate Jacobian; 5.3 Exact Polynomial Integration; 5.4 Numerical Integration; 5.5 Variable Jacobians; 5.6 References; Chapter 6. Beam Analysis; 6.1 Introduction; 6.2 Variational Procedure; 6.3 Hermite Element Matrices; 6.4 Sample Application; 6.5 Gradient Estimates; 6.6 Element Equations via Galerkin's Method ; 6.7 Beams on an Elastic Foundation ; 6.8 Exact Analytic Elements ; 6.9 References; Chapter 7. Truss Elements and Axis Transformations; 7.1 Introduction; 7.2 Direction Cosines.
  • 7.3 Transformation of Displacement Components7.4 Transformation of Element Matrices; 7.5 Example Structures; 7.6 References; Chapter 8. Cylindrical Analysis Problems; 8.1 Introduction; 8.2 Heat Conduction in a Cylinder; 8.3 Cylindrical Stress Analysis; 8.4 References; Chapter 9. General Interpolation; 9.1 Introduction; 9.2 Unit Coordinate Interpolation; 9.3 Natural Coordinates; 9.4 Isoparametric and Subparametric Elements; 9.5 Hierarchical Interpolation; 9.6 Differential Geometry; 9.7 Parametric Extrapolation; 9.8 Mass Properties, Equivalent Geometry ; 9.9 Interpolation Error.
  • 9.10 ReferencesChapter 10. Adaptive Analysis; 10.1 Introduction; 10.2 H-Adaptivity; 10.3 P-Adaptivity; 10.4 HP-Adaptivity; 10.5 Adaptive Example; 10.6 References; Chapter 11. Integration Methods; 11.1 Introduction; 11.2 Unit Coordinate Integration; 11.3 Simplex Coordinate Integration; 11.4 Numerical Integration; 11.5 Typical Source Distribution Integrals; 11.6 Minimal, Optimal, Reduced and Selected Integration; 11.7 References; Chapter 12. Heat Transfer; 12.1 Introduction; 12.2 Variational Formulation; 12.3 Element and Boundary Matrices; 12.4 Example Application; 12.5 References.