Cargando…

Calculus and its applications /

Calculus and Its Applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mainardi, Pompey, 1911-
Otros Autores: Barkan, Herbert
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Pergamon Press, 1963.
Colección:Pergamon Press book.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn892066718
003 OCoLC
005 20231120111747.0
006 m o d
007 cr cnu---unuuu
008 141003s1963 enk o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d E7B  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162443934 
020 |a 9781483168128  |q (electronic bk.) 
020 |a 1483168123  |q (electronic bk.) 
020 |a 1483195600 
020 |a 9781483195605 
035 |a (OCoLC)892066718  |z (OCoLC)1162443934 
050 4 |a QA303 
082 0 4 |a 517  |2 22 
100 1 |a Mainardi, Pompey,  |d 1911- 
245 1 0 |a Calculus and its applications /  |c by P. Mainardi and H. Barkan. 
264 1 |a Oxford :  |b Pergamon Press,  |c 1963. 
300 |a 1 online resource (vi, 537 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a A Pergamon Press book 
588 0 |a Print version record. 
505 0 |a Front Cover; Calculus and its Applications; Copyright Page; PREFACE; Table of Contents; CHAPTER I. FUNDAMENTAL IDEAS; 1.1 The Concept of Function; 1.2 Exercises; 1.3 Introduction to the Limit Concept; 1.4 Exercises; 1.5 Intuitive Definition of Limit; 1.6 Exercises; 1.7 A Precising Definition of Limit; 1.8 Exercises; 1.9 Limits Involving Infinity; 1.10 Operations on Limits; 1.11 Exercises; 1.12 Continuity; 1.13 Exercises; 1.14 An Interpretation of Ratio; 1.15 Average Rate of Change; 1.16Exercises; 1.17 Use of Limits in Defining The Slope of a Curve ata Point; 1.18 Exercises 
505 8 |a 1.19 Generalized Instantaneous Rate of Change1.20 Exercises; 1.21 Units of Instantaneous Rates; CHAPTER II. DERIVATIVE; 2.1 Differentiation of Algebraic Functions by Formula; 2.2 Exercises; 2.3 Proof of Differentiation Rules I -- VIII; 2.4 Proof of Formula IX; 2.5 Proof of Formula X; 2.6 Exercises; CHAPTER III. DIFFERENTIATION AND APPLICATIONS; 3.1 The Use of Derivatives in Sketching Graphs of Algebraic Functions; 3.2 Exercises; 3.3 The Use of Derivatives in Examining Functions for ExtremeValues; 3.4 Exercises; 3.5 Differentiation of Implicit Functions; 3.6 Exercises; 3.7 Time Rates 
505 8 |a 3.8 ExercisesCHAPTER IV. HIGHER ORDER DERIVATIVES; 4.1 Derivatives of Higher Order; 4.2 Exercises; 4.3 The Use of the Second Derivative in Curve Sketching; 4.4Exercises; 4.5The Second Derivative in Linear Motion; 4.6Exercises; CHAPTER V. DIFFERENTIATION OF THE TRIGONOMETRIC FUNCTIONS; 5.1 Derivatives of sin v and cos v; 5.2Exercises; 5.3 The FunctionsArcsin x and Arccos x and Their Derivatives; 5.4 Differentiation Formulas for the SixInverse Trigonometric Fractions; 5.5 Exercises; CHAPTER VI. EXPONENTIAL AND LOGARITHMIC FUNCTIONS; 6.1 Laws of Exponents; 6.2 The Exponential Function 
505 8 |a 6.3 The Logarithmic Function6.4 Laws of Logarithms; 6.5 TheNumber; 6.6 The Derivative oflog; 6.7 The Derivativeof; 6.8 Exercises; CHAPTER VII. DIFFERENTIALS AND PARAMETRIC EQUATIONS; 7.1 Differentials; 7.2 Exercises; 7.3 Parametric Equations and Curvature; 7.4 Exercises; 7.5 Derivative of Arc Length; 7.6 Curvature; 7.7 Circle of Curvature; 7.8 Exercises; 7.9 Tangents to Polar Curves; 7.10 Exercises; CHAPTER VIII. VECTORS; 8.1 Introduction; 8.2 Definitions of Vector and Scalar Quantities; 8.3 Geometrical Representation of Vectors; 8.4 Components; 8.5 Differentiation of Vectors; 8.6 Exercises 
505 8 |a CHAPTER IX. ANTI-DIFFERENTIATION9.1 Integration, The Inverse of Differentiation; 9.2 Constant of Integration; 9.3 Exercises; 9.4 Rules and Formulas for Integration; 9.5 Exercises; 9.6 Rules for Integration; 9.7 Integration by Standard Formulas; 9.8 Exercises; CHAPTER X. SEPARABLE DIFFERENTIAL EQUATIONS; 10.1 Introduction; 10.2 Solving Differential Equations; 10.3 Integrating Both Sides -- 10.4 Applications to Geometry; 10.5 Exercises; 10.6 Applications to Physical Problems; 10.7 Exercises on Motion; 10.8 Exercises on Physical Problems; CHAPTER XI. DEFINITE INTEGRAL; 11.1 Introduction 
520 |a Calculus and Its Applications. 
546 |a English. 
650 0 |a Calculus. 
650 6 |a Calcul infinit�esimal.  |0 (CaQQLa)201-0003658 
650 7 |a calculus.  |2 aat  |0 (CStmoGRI)aat300054528 
650 7 |a Calculus  |2 fast  |0 (OCoLC)fst00844119 
700 1 |a Barkan, Herbert. 
776 0 8 |i Print version:  |a Mainardi, Pompey, 1911-  |t Calculus and its applications  |z 9781483195605  |w (OCoLC)219737985 
830 0 |a Pergamon Press book. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781483168128  |z Texto completo