Cargando…

Cathodic corrosion protection systems : a guide for oil and gas industries /

Corrosion is a naturally occurring cost, worth billions in the oil and gas sector. New regulations, stiffer penalties for non-compliance and aging assets are all leading companies to develop new technology, procedures and bigger budgets catering to one prevailing method of prevention, cathodic prote...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bahadori, Alireza (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, Massachusetts : Elsevier, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. Behavior of Buried or Immersed Metals in the Absence of CP
  • 1.1.1. The Nature of Metallic Corrosion
  • 1.1.2. Polarization
  • 1.1.3. Formation of Cells
  • 1.1.4. Passivity
  • 1.1.5. Reactions at Cathodic Areas
  • 1.2. Cathodic Protection
  • 1.2.1. Basis of CP
  • 1.3. Considerations Applicable to Most Types of Structures
  • 1.3.1. Range of Application
  • 1.3.2. Basis of Design
  • 1.3.3. Design or Modification of Structures to be Protected
  • 1.3.4.Comparison of the Various Systems
  • 1.3.5. Special Considerations
  • 1.3.6. Measures to Safeguard Neighboring Structures
  • 1.3.7. Design of CP Installations to Minimize Corrosion Interaction
  • 1.3.8. Measures to Reduce Corrosion Interaction
  • 1.3.9. CP Systems Installed Adjacent to Telecommunication Services
  • 1.3.10. CP Systems Adjacent to Railway Signals and Protection Circuits
  • 1.3.11. Interaction at Discontinuities in Cathodically Protected Structures
  • 1.3.12. Jetties and Ships: Corrosion Interaction at Sea and River Terminals
  • 1.4. Safety Aspects
  • 1.4.1. Danger of Electric Shock
  • 1.4.2. Fault Conditions in Electricity Power Systems in Relation to Remedial and/or Unintentional Bonds
  • 1.4.3. Hydrogen Evolution
  • 1.4.4. Installation in Hazardous Atmospheres
  • 2.1. Criteria for Cathodic Protection
  • 2.2. Buried Pipes
  • 2.3. Tanks Exteriors
  • 2.4. Submerged Pipelines
  • 2.5. Offshore Structures and Ship Hulls
  • 2.6. Tank, Pipe, and Water Box Interiors
  • 2.7. Well Casings
  • 2.8. Types of Cathodic Protection Systems
  • 2.8.1. Impressed Current Systems
  • 2.8.2. Galvanic Anode Systems
  • 2.8.3. Galvanic versus Impressed Current System
  • 2.9. Equipment and Facilities for Impressed Current Systems
  • 2.9.1. Cathodic Protection Transformer Rectifiers
  • 2.9.2. Alternative Cathodic Protection Power Sources
  • 2.9.3. Impressed Current Anodes
  • 2.9.4. Cables
  • 2.9.5. Insulating Devices
  • 2.9.6. Anode Beds
  • 2.9.7. Electrical Bonding Station
  • 2.9.8. Test Stations
  • 2.9.9. Connections
  • 2.9.10. Electrical Continuity
  • 2.9.11. Protective Coatings
  • 2.9.12. Insulation
  • 2.9.13. Safety
  • 2.9.14. Site Survey
  • 2.9.15. Provision for Testing
  • 2.10. Cathodic Protection of Buried Steel Pipes
  • 2.10.1. Application
  • 2.10.2. Types of Cathodic Protection Systems
  • 2.10.3. Galvanic Anode Systems
  • 2.10.4. Isolation of Buried Pipes
  • 2.10.5. Test and Bonding Stations
  • 2.10.6. Cased Crossing Test Station
  • 2.10.7. Line Crossing Test Station
  • 2.10.8. Insulated Fitting Test Station
  • 2.10.9. System Design
  • 2.10.10. Particular Considerations
  • 2.11. Cathodic Protection In-Plant Facilities
  • 2.11.1. Application
  • 2.11.2. Types of Cathodic Protection Systems
  • 2.11.3. Impressed Current System Details
  • 2.11.4. Galvanic Anode System Details
  • 2.11.5. Test and Bonding Stations
  • 2.11.6. Hazardous Locations
  • 2.11.7. Oil Storage Tank Bottoms
  • 2.12. Cathodic Protection of Vessel and Tank Internals
  • 2.12.1. Types of Cathodic Protection Systems
  • 2.12.2. Current Density
  • 2.12.3. Anode Distribution
  • 2.12.4. Reference Electrode Position
  • 2.12.5. Protection of Specific Installations
  • 2.13. Cathodic Protection of Marine Structures
  • 2.13.1. Current Density
  • 2.13.2. Marine Structural Zones
  • 2.13.3. Zone Protection
  • 2.13.4. Protection of Specific Installations Including Vessels
  • 2.13.5. Anodes for Impressed Current Systems
  • 2.13.6. Anodes for Galvanic Anode Systems
  • 2.13.7. Boosted Polarization
  • 2.13.8. Cathodic Protection Design for Marine Structures
  • 2.13.9. Fixed Potential Monitoring Systems
  • 2.13.10. Potential Survey
  • 2.13.11. Retrofits
  • 2.14. Anodic Protection
  • 2.14.1. Principles of Anodic Protection
  • 2.14.2. Contrast with Cathodic Protection
  • 2.14.3. Effects of Variable Factors on Anodic Protection
  • 2.14.4. Applications to Process Plants
  • 3.1. Principles of Cathodic Protection
  • 3.2. Methods of Applying Cathodic Protection
  • 3.2.1. Impressed Current
  • 3.2.2. Sacrificial Anodes
  • 3.3. Protection Potentials
  • 3.4. Current Density
  • 3.5. Coatings
  • 3.6. Calcareous Scales
  • 3.7. Choice of a Cathodic-Protection System
  • 3.8. Anode Resistance
  • 3.9. Impressed-Current System
  • 3.9.1. Current[--]Voltage Relationships
  • 3.9.2. Single Drain Point
  • 3.9.3. Multiple Drain Points
  • 3.9.4. Effect of Coating
  • 3.9.5. Point of Minimum Protection
  • 3.9.6. Bare and Poorly Coated Lines
  • 3.9.7. Voltage Limitations
  • 3.9.8. Current Requirements
  • 3.9.9. Measurements
  • 3.9.10. Sizing of Rectifiers
  • 3.9.11. Calculations
  • 3.10. Galvanic Anode System
  • 3.10.1. Symbols
  • 3.10.2. Current Output
  • 3.11. Design Principle of Cathodic Protection for Marine Structures
  • 3.11.1. Design- Calculations
  • 3.11.2. Single Cylindrical Vertical Anode
  • 3.11.3. Group of Vertical Anodes Equally Spaced in a Straight Line
  • 3.11.4. Galvanic Anode Systems
  • 3.11.5. Anode Output Formula
  • 3.11.6. Pipelines and Attenuation of Potential
  • 3.11.7. Sacrificial Anode Materials
  • 3.11.8. The Use of Sacrificial.
  • Anodes for Internal Cathodic Protection
  • 3.11.9. The Type and Number of Anodes Required
  • 3.11.10. Anode Location
  • 3.11.11. The Use of Sacrificial Anodes for External Cathodic Protection
  • 3.11.12. The Type and Number of Anodes Required (Full Hull Protection)
  • 3.12. Anode Location
  • 3.12.1. Fitting Out Protection
  • 3.12.2. Tank Descaling
  • 3.12.3. Individual Anode Output Determination and Calculation (Sacrificial Anodes)
  • 3.12.4. Impressed Current
  • 3.13. Anodic Protection
  • 4.1. Impressed Current Anodes
  • 4.2. Manufacturing of Materials
  • 4.3. Anode Casting
  • 4.3.1. Casting of High-Silicon[--]Chromium[--]Iron Anode
  • 4.3.2. Casting of Graphite Anode
  • 4.3.3. Casting of Magnetite Anode
  • 4.4. Lead Wire-to-Anode Connection
  • 4.5. Anode Lead Wire
  • 4.5.1. Conductor
  • 4.5.2. Lead Wire Insulation
  • 4.6. Properties
  • 4.6.1. Mechanical Resistance Test
  • 4.6.2. Electrical Resistance Test
  • 4.6.3. Temperature Dependence
  • 4.6.4. Fluoropolymer-Insulated Anode Lead Wire Test
  • 4.6.5. Radiographic Test
  • 4.7. Dimensions and Weights
  • 4.8. Carbonaceous Backfill for Impressed Current Anodes
  • 4.8.1. Requirements
  • 4.8.2. Bulk Density
  • 4.8.3. Resistivity
  • 4.8.4. Particle Size
  • 4.9. Galvanic Anodes for Underground Applications (Magnesium and Zinc)
  • 4.9.1. Classification
  • 4.9.2. Materials and Manufacture
  • 4.9.3. Anode Composition
  • 4.9.4. Anode Core
  • 4.9.5. Production Testing
  • 4.9.6. Requirements
  • 4.9.7. Workmanship, Finish, and Appearance
  • 4.9.8. Mechanical Resistance
  • 4.9.9. Electrical Resistance
  • 4.9.10. Anode Dimensions and Weights
  • 4.9.11. Zinc Anodes
  • 4.9.12. Methods of Attachment of Cable for Cast Anodes
  • 4.9.13. Identification of Anodes
  • 4.10. Chemical Backfill for Galvanic Anodes
  • 4.10.1. Backfill Composition
  • 4.10.2. Particle Size
  • 4.10.3. Backfill Analysis
  • 4.10.4. Anode Packaging
  • 4.11. Method for the Determination of the Anode-to-Core Resistance of Galvanic Anodes
  • 4.11.1. Circuit
  • 4.11.2. Procedure
  • 4.12. Galvanic Anodes for Submerged Applications (Magnesium and Zinc)
  • 4.12.1. Materials and Manufacture
  • 4.12.2. Magnesium Anodes
  • 4.12.3. Zinc Anodes
  • 4.12.4. Production Testing
  • 4.12.5. Requirements
  • 4.12.6. Quality of Steel Inserts
  • 4.12.7. Electrical Resistance
  • 4.12.8. Identification of Anodes
  • 4.13. Method for the Determination of the Anode-to-Core Resistance of Galvanic Anodes
  • 4.13.1. Principle
  • 4.13.2. Apparatus
  • 4.13.3. Circuit
  • 4.13.4. Procedure
  • 4.14. Bracelet-Type Galvanic Anodes for Submarine Pipelines (Aluminum and Zinc)
  • 4.14.1. Materials and Manufacture
  • 4.14.2. Alloy Composition
  • 4.14.3. Production Testing
  • 4.15. Anode Core Steel Works
  • 4.15.1. Insert Material
  • 4.15.2. Insert Surface Preparation
  • 4.15.3. Welding
  • 4.15.4. Requirements
  • 4.15.5. Mechanical Resistance
  • 4.15.6. Electrical Resistance
  • 4.15.7. Consumption Rate of Aluminum Anodes in Seawater
  • 4.15.8. Closed Circuit Potential of Aluminum Anodes in Seawater
  • 4.15.9. Surface Irregularities in the Anode Casting
  • 4.15.10. Cracks in Cast Anodes Material
  • 4.15.11. Anode Connections
  • 4.16. Method for the Determination of the Anode-to-Core Resistance of Galvanic Anodes
  • 4.16.1. Apparatus
  • 4.16.2. Circuit
  • 4.16.3. Procedure
  • 4.17. Method for the Determination of the Consumption Rate of Aluminum Anode Alloys Immersed in Seawater
  • 4.17.1. Apparatus
  • 4.17.2. Circuit
  • 4.17.3. Preparation of Test Anodes
  • 4.17.4. Procedure
  • 4.18. Method for the Determination of the Closed-Circuit Potential of Aluminum Anodes Immersed in Seawater
  • 4.18.1. Apparatus
  • 4.18.2. Circuit
  • 4.18.3. Preparation of Test Anode
  • 4.18.4. Procedure
  • 4.19. Cast Galvanic Anodes for Fixed Offshore Installations (Aluminum)
  • 4.19.1. Materials and Manufacture
  • 4.19.2. Type of Anodes
  • 4.19.3. Chemical Composition
  • 4.19.4. Production Testing
  • 4.19.5. Anode Insert
  • 4.20. Requirements
  • 4.20.1. Casting Quality
  • 4.20.2. Weight and Dimensional Tolerances
  • 4.20.3. Performance Requirements
  • 4.20.4. Identification of Anodes
  • 4.20.5. Anode Protection
  • 4.21. CP Cables
  • 4.21.1. Conductor
  • 4.21.2. Insulation
  • 4.21.3. Insulating Materials
  • 4.22. Specific Cable Requirements
  • 4.22.1. Positive Conductor Cable
  • 4.22.2. Negative, Bond, or Test Conductor Cable
  • 4.23. Quality Assurance Provisions
  • 4.24. Tests
  • 4.25. Fabrication and Inspection of Monolithic Insulating Joints
  • 4.25.1. Design
  • 4.25.2. Materials
  • 4.25.3. Manufacture
  • 4.26. Approved Welding Processes
  • 4.27. Coating
  • 4.28. Quality Assurance Provisions
  • 4.29. Tests
  • 4.29.1. Chemical Analysis
  • 4.29.2. Mechanical Test
  • 4.29.3. Dielectric Test and Megger Test
  • 4.29.4. Hydrostatic Test
  • 4.29.5. Low Pressure Leakage Test (Air Test)
  • 4.29.6. Prototype Tests
  • 4.29.7. Radiographic Test
  • 4.29.8. Magnetic Particle and Ultrasonic Test
  • 4.29.9. Dye Penetrant Test
  • 4.29.10. Visual Inspection and Dimensional Check
  • 4.30. Flange Insulation Kit
  • 4.30.1. Materials
  • 4.30.2. Requirements
  • 4.30.3. Detail Requirements for Insulating Gaskets and Sleeves
  • 4.30.4. Packaging
  • 4.30.5. Quality Assurance Provisions
  • Note continued: 4.30.6. Sampling
  • 4.31. Polypropylene Rope
  • 4.31.1. Requirements
  • 4.31.2. Other Characteristics
  • 4.31.3. Quality Assurance Provisions
  • 4.31.4. Splicing Kit
  • 4.31.5. Description
  • 4.31.6. Materials and Manufacture
  • 4.31.7. Properties of Catalyzed Resins
  • 4.31.8. Packaging
  • 4.31.9. Sampling
  • 4.32. Split Bolt Connector (Line Tap)
  • 4.32.1. Materials and Manufacture
  • 4.32.2. Dimensions
  • 4.32.3. Workmanship, Finish, and Appearance
  • 4.32.4. Quality Assurance Provisions
  • 4.32.5. Splice Coating Materials
  • 4.32.6. Electrical Insulating Plastic Tape
  • 4.33. Rubber Splicing Tape
  • 4.33.1. Materials and Manufacture
  • 4.33.2. Requirements
  • 4.33.3. Storage Test
  • 4.33.4. Roll Size
  • 4.33.5. Color
  • 4.33.6. Packaging, and Sampling
  • 4.34. Thermit Weld (Cad Weld) Powder
  • 4.34.1. Sampling
  • 5.1. Criteria for Cathodic Protection
  • 5.1.1. Buried Pipes
  • 5.1.2. Tanks Exteriors
  • 5.1.3. Submerged Pipelines
  • 5.1.4. Offshore Structures and Ship Hulls
  • 5.1.5. Tank, Pipe, and Water Box Interiors
  • 5.1.6. Well Casings
  • 5.1.7. Potential Limits
  • 5.1.8. Aluminum
  • 5.1.9. Lead
  • 5.1.10. Stainless Steels
  • 5.1.11. Steel in Concrete
  • 5.2. Periodic Inspection
  • 5.2.1. Potential Survey
  • 5.2.2. Test Equipment for Potential Survey
  • 5.2.3. Procedure to Be Observed
  • 5.3. Potential Survey of Buried Steel Pipes
  • 5.3.1. Instruments
  • 5.3.2. Potential Measurements
  • 5.3.3.Compensation for the IR Drop Component in Cathodically Protected Pipelines
  • 5.3.4. Overprotection
  • 5.3.5. Potential Survey at Cased Crossings
  • 5.3.6. Potential Tests at Insulating Devices
  • 5.4. Potential Survey of Cathodically Protected Reinforced Concrete
  • 5.4.1. Potential Measurement
  • 5.4.2. Electrodes and Probes for Some Concretes
  • 5.5. Potential Survey of Offshore Structures
  • 5.5.1. Reference Electrodes
  • 5.5.2. Methods of Measurement
  • 5.5.3. Potential Measurements with a Diver-Operated Unit
  • 5.5.4. Potential Measurements with Surface Voltmeter, Cable, and Measuring Electrode
  • 5.5.5. Subsea Pipeline Potential Survey
  • 5.5.6. Time Intervals
  • 5.5.7. The Extent of the Potential Survey
  • 5.6. Inspection of Rectifiers
  • 5.6.1. Records
  • 5.6.2. Major Points for Routing Inspection
  • 5.6.3. Annual Inspection
  • 5.7. Inspection of Ground Bed
  • 5.7.1. On-land Ground Bed
  • 5.7.2. Submerged Ground Beds
  • 5.8. Inspection of Offshore Sacrificial Anodes
  • 5.9. Current Survey
  • 5.9.1. Pipelines
  • 5.9.2. Offshore Structures
  • 5.10. Inspection Following Failure Report
  • 5.10.1. Increase in Circuit Resistance
  • 5.10.2. Stray Electric Currents
  • 5.10.3. Tests for Electrical Continuity
  • 5.10.4. Problems Associated with Galvanic Anode Installation
  • 5.11. Inspection and Survey for Efficiencies of Coatings
  • 5.11.1. Coating Resistance Measurement
  • 5.11.2. Attenuation Test Method
  • 5.11.3. Pearson Method
  • 5.11.4. Coating Inspection by C-Scan
  • 5.11.5. Visual Inspection
  • 5.11.6. Over-the-Line Potential Survey
  • 5.12. Data Recording and Analysis
  • 5.12.1. Data Recording
  • 5.12.2. Analysis of Data
  • 5.13. Interferences
  • 5.13.1. Cathode Field Interferences
  • 5.13.2. Measurements of Cathode Field Interferences
  • 5.13.3. Anode Field Interferences
  • 5.13.4. Measurements of Anode Field Interferences
  • 5.13.5. Corrective Measurers
  • 5.14. Meters and Equipment
  • 5.14.1. Reference Electrode
  • 5.14.2.C6pper/Copper Sulfate Electrode
  • 5.14.3. Silver/Silver Chloride Electrode
  • 5.14.4. Pure Zinc Electrode
  • 5.14.5. Calomel Electrode
  • 5.15. Potentiometer and Voltmeter
  • 5.15.1. Conventional Voltmeter (High Resistance)
  • 5.15.2. Potentiometer[--]Voltmeter
  • 5.15.3. Potentiometer
  • 6.1. Test Methods for the Short Circuit Point
  • 6.1.1. Locating Casing Short Circuit
  • 6.1.2. Insulation Tests
  • 6.2. American Society for Testing and Material Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel Bar in Concrete
  • 6.2.1. Scope
  • 6.2.2. Significance and Use
  • 6.2.3. Apparatus
  • 6.2.4. Calibration Standardization
  • 6.2.5. Procedure
  • 6.2.6. Recording Half-Cell Potential Values
  • 6.2.7. Data Presentation
  • 6.2.8. Interpretation of Results
  • 6.2.9. Report
  • 6.2.10. Precision and Bias
  • 6.3. Subsea Pipeline CP Survey Method
  • 6.3.1. Introduction
  • 6.3.2. System Components
  • 6.3.3. Survey Operation
  • 6.3.4. Survey Results
  • 6.4. Line Current Survey Test Method
  • 6.4.1. Test Procedure with the Test Point Consisting of Four Wires
  • 6.4.2. Test Procedure Using the Null Amp Test Circuit for Line Current Measurement
  • 6.5.Computer Modeling of Offshore CP Systems Utilized in CP Monitoring
  • 6.5.1.Computerized Modeling Techniques
  • 6.5.2. Short Theoretical Background
  • 6.5.3. Numerical Solutions
  • 6.5.4. Analysis of Existing CP Systems
  • 6.5.5. Performance of Sacrificial Anodes
  • 6.5.6. Analysis of Attenuation Curves at Sacrificial Anodes
  • 6.5.7. Potentials in Nodal Areas[--]Improved Efficiency in Potential Surveys of Nodes
  • 6.6. Coating Resistance Measurement Method
  • 6.6.1. Current[--]Voltage Change Method
  • 6.6.2. Pipeline Current with Interrupter On and Off
  • 6.7. Test Method and Calculation for "Attenuation Constant"
  • 6.7.1. Significance of Attenuation Constant
  • 6.7.2. Example Use of Graph Relating to Attenuation Constant
  • 6.8. Coating Inspection by the Pearson Method
  • 6.8.1. Equipment
  • 6.8.2. Procedure
  • 6.8.3. Data Obtained
  • 6.8.4. Presentation of Data
  • 6.9. Coating Inspection by the C-Scan System
  • 6.9.1.C-Scan System Features
  • 6.9.2. Performing Survey by C-Scan
  • 6.9.3. Advantages of the System
  • 6.9.4. Theoretical Background
  • 6.9.5. Operation Principle
  • 6.10. Coating Evaluation by Electromagnetic Current Attenuation Survey
  • 6.10.1. Equipment
  • 6.10.2. Procedure
  • 6.10.3. Data Obtained
  • 6.10.4. Presentation of Data
  • 6.10.5. Criteria and Interpretation
  • 6.11. Close Interval Pipe-to-Soil Potential Survey
  • 6.11.1. Measurement Intervals
  • 6.11.2. Switching Frequency
  • 6.11.3. Distance Measurement
  • 6.11.4. Stationary Measurements
  • 6.11.5. Equipment
  • 6.11.6. Procedure
  • 6.11.7. Data Obtained
  • 6.11.8. Presentation of Data
  • 6.11.9. Criteria and Interpretation
  • 6.12. An Example for Cathodic Field Interference Test Method
  • 6.13. Tests for Electrical Continuity
  • 7.1. Galvanic Anodes
  • 7.2. Impressed Current Anodes
  • 7.3. Transformer/Rectifier Equipment
  • 7.4. Excavation and Backfilling
  • 7.5. Installation of CP Systems for Buried Pipelines
  • 7.5.1. Installation of Impressed Current Systems
  • 7.5.2. Installation of Transformer/Rectifier Equipment
  • 7.5.3. Cabling
  • 7.5.4. Electrical Connections
  • 7.5.5. Installation of Test Stations (Test Points)
  • 7.5.6. Installation of Test Box(es)
  • 7.5.7. Earthing of CP Equipment
  • 7.5.8. Fencing
  • 7.5.9. Parallel Power Lines
  • 7.5.10. Lightning Protection
  • 7.5.11. Surge Arrestors
  • 7.6. Installation of Galvanic Anode Systems
  • 7.6.1. Single Packaged Anode
  • 7.6.2. Multiple Galvanic Anodes
  • 7.6.3. Extruded Ribbon Anodes
  • 7.6.4. Connection of Galvanic Anodes to the Pipeline
  • 7.7. Installation of CP Systems for Compact Buried Structures
  • 7.7.1. Structure Preparation (to be- Considered by the Structural Constructor)
  • 7.7.2. Installation of Permanent Reference Electrodes
  • 7.7.3. Installation of Insulating Flanges, Joints, and Couplings
  • 7.8. Installation of CP Systems for Internal Surfaces
  • 7.8.1. Materials and Equipment Acceptance (or Compliance)
  • 7.8.2. Installation of Impressed Current Systems
  • 7.8.3. Safety Precautions
  • 7.8.4. Installation of Galvanic Anode Systems
  • 7.8.5. Permanently Installed Reference Electrodes
  • 7.9. Installation of CP Systems for Marine Structures
  • 7.9.1. Immersed Structures
  • 7.9.2. Installation of Galvanic Anode Systems
  • 7.9.3. Electrical Connections
  • 7.9.4. Corrosion Control Test Stations, Connection, and Bonds
  • 7.9.5. Installation of Insulating Joints/Flanges and Devices
  • 7.10. Submarine Pipelines
  • 7.10.1. Installation of Impressed Current Systems
  • 7.10.2. Installation of Galvanic Anode Systems
  • 7.10.3. Corrosion Control Test Stations, Connections, and Bonds
  • 7.10.4. Reinforcement
  • 7.10.5. Pipeline Crossings
  • 7.11. Electrical Measurements and Tests
  • 7.11.1. Potential Measurements
  • 7.11.2. Potential Survey of Internal Protection of the Plant
  • 7.11.3. Determination of Bond Resistance
  • 7.12. Tests Prior to Installation of CP on Buried or Immersed Structures
  • 7.12.1. Soil/Water Evaluation
  • 7.12.2. Structure/Electrolyte "Natural" Potential Survey
  • 7.12.3. Stray Electric Currents
  • 7.12.4. Tests for Electrical Continuity
  • 7.13. Tests during the Commissioning Period
  • 7.13.1. Buried Structures
  • 7.13.2. Fixed Immersed Structures
  • 7.13.3. Internal Protection of Plant
  • 7.13.4. Internal Surfaces
  • 7.14. Specialized Surveys
  • 8.1. Precommissioning Inspection and Check
  • 8.2. Hookup and Commissioning
  • 8.2.1. Impressed Current Systems
  • 8.2.2. Sacrificial Anodes
  • 8.2.3. Interference
  • 8.3.Commissioning Survey
  • 8.4.Commissioning Report
  • 8.5. Installation of Electrical Isolation Equipment
  • 8.5.1. Installation
  • 8.5.2. Insulating Joints
  • 8.5.3. Isolated Flange Joints
  • 8.5.4. Protection Against External Moisture Ingress
  • 8.5.5. Pipeline Casing Insulators
  • 8.5.6. High Voltage Protection
  • 8.6. Thermit Welding of CP Leads
  • 8.7. Pipe Preparation
  • 8.8. Thermit Weld Preparation and Procedure
  • 8.9. Control of Interference Currents on Foreign Structures
  • 8.10. Notifying Owners of Other Structures for Interference Testing
  • 8.11. Interference Testing
  • 8.11.1. Stage at Which Interference Tests Shall Be Made
  • 8.11.2. Tests to Assess Interference.
  • 8.11.3. Tests After Remedial Measures Have Been Applied
  • 8.12. Criteria for Limiting Corrosion Interaction
  • 8.12.1. Limit of Positive Structure/Electrolyte Potential Changes for All Structures
  • 8.12.2. Negative Changes of Structure/Electrolyte Potential
  • 8.12.3. Control of Interference
  • 8.12.4. Control by the Use of Galvanic Anodes
  • 8.12.5. Control by the Use of Impressed Current CP
  • 8.12.6. Control by Bonding
  • Note continued: 8.12.7. Fault Conditions in Electricity Power Systems in Relation to Remedial and/or Unintentional Bonds
  • 8.13. Telluric Current
  • 8.14. AC Effects
  • 8.15. Measurement of Soil Resistivity
  • 8.16. Field Procedures
  • 8.17. Frequency of Measurement
  • 8.17.1. Presentation of Results
  • 8.17.2. Criteria and Interpretation
  • 8.18. Measurement of Electrode Resistance
  • 8.18.1. Measurement of Earth Electrode Resistance
  • 8.18.2. Measurement of Resistance of Earthing Conductor
  • 8.19. Current Drainage Survey
  • 8.19.1. Method
  • 8.20. Determination In situ of the Redox Potential of Soil
  • 8.20.1. Apparatus
  • 8.20.2. Materials
  • 8.20.3. Procedure
  • 8.20.4. Calculations and Expression of the Results
  • 8.20.5. Test Report
  • 8.21. Inspection of CP Installations
  • 8.21.1. CP Installations
  • 8.21.2. Test Points, Cased Crossings and Insulating Joints
  • 8.21.3. Coating Inspection
  • 8.22. Installation in Hazardous Atmospheres
  • 8.22.1. Bonds
  • 8.22.2. Isolating Joints
  • 8.22.3. Short Circuits between Points of Different Potentials
  • 8.22.4. Disconnection, Separation, or Breaking of Protected Pipework
  • 8.22.5. Electrical Equipment
  • 8.22.6. Test Instruments
  • 8.22.7. Internal Anodes
  • 8.22.8. Sacrificial Anodes
  • 8.22.9. Instruction of Personnel.