Cargando…

Industrial wastewater treatment, recycling and reuse /

Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on rece...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ranade, Vivek V.
Otros Autores: Bhandari, Vinay M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Butterworth-Heinemann, 2014.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Industrial Wastewater Treatment, Recycling, and Reuse
  • Copyright
  • Contents
  • Preface
  • Contributors
  • Chapter 1: Industrial Wastewater Treatment, Recycling, and Reuse: An Overview
  • 1.1. Water Usage in Industry
  • 1.1.1. Overall Water Availability
  • 1.1.2. Industrial Water Usage
  • 1.1.3. Treatment, Recycling, and Reuse
  • 1.2. Characterization of Industrial Wastewater
  • 1.3. Strategy for Wastewater Management
  • 1.3.1. Hierarchical Approach for Solving Pollution Problems
  • 1.4. Separation Processes and Conventional Methods of Wastewater Treatment
  • 1.4.1. Coagulation/Flocculation
  • 1.4.1.1. Commonly Used Coagulants
  • 1.4.2. Adsorption
  • 1.4.3. Ion Exchange
  • 1.4.4. Membrane Separation
  • 1.4.5. Cavitation
  • 1.4.6. Advanced Oxidation Processes
  • 1.4.7. Incineration
  • 1.4.8. Biological Method of Treatment
  • 1.4.8.1. Aerobic Treatment
  • 1.4.8.2. Anaerobic Treatment
  • 1.4.8.3. Biological Treatment: Combination of Aerobic and Anaerobic Operations
  • 1.4.9. Hybrid Separations
  • 1.5. Industry Sectors Where Wastewater Treatment, Recycling, and Reuse Can Have a High Impact
  • 1.5.1. Removal of Metals
  • 1.5.2. Dye Wastewater Treatment
  • 1.5.2.1. Indian Scenario
  • 1.5.2.2. Global Scenario
  • 1.5.2.3. Dye Wastewater Treatment: Overview and Recommendations
  • 1.5.3. Food Industry
  • 1.6. Industrial Wastewater Treatment Process Engineering
  • 1.6.1. Newer Modifications in the Existing Methods
  • 1.7. Advanced Modeling for Water Treatment
  • 1.8. Cost of Wastewater Treatment and Possible Value Addition
  • 1.9. Summary
  • References
  • Chapter 2: Advanced Physico-chemical Methods of Treatment for Industrial Wastewaters
  • 2.1. Introduction
  • 2.1.1. Selection of Method
  • 2.1.2. Devising a Solution for Industrial Wastewater Treatment
  • 2.2. Advanced Coagulation Processes
  • 2.2.1. Types of Coagulant.
  • 2.2.2. How Coagulants Work and How to Select Coagulant
  • 2.2.3. Advances in Coagulation Process and Practice
  • 2.2.3.1. Electro-coagulation and Cavigulation
  • 2.2.4. Case Study: Dye Wastewater Treatment
  • 2.3. Advanced Adsorption and Ion Exchange Processes
  • 2.3.1. Adsorbent: Screening and Selection
  • 2.3.2. Equilibria and Kinetics of Adsorption
  • 2.3.2.1. Adsorption Isotherm
  • 2.3.2.2. Adsorption Kinetics
  • 2.3.3. Recent Advances in Adsorption Processes
  • 2.3.4. Ion Exchange
  • 2.3.5. Ion Exchange: Advances and Applications in Wastewater Treatment
  • 2.3.6. Case Study: Adsorption/Ion Exchange for Acid Removal
  • 2.4. Other Advanced Physico-chemical Methods of Treatment
  • 2.4.1. Membrane Separations
  • 2.4.1.1. Membrane Variants in Wastewater Treatment
  • 2.4.1.2. Membranes in Wastewater Treatment: Future Needs
  • 2.4.2. Advanced Oxidation Processes
  • 2.4.2.1. Electro-oxidation
  • 2.5. Cavitation
  • 2.5.1. Cavitation Using Tangential Flow/Vortex Diodes
  • 2.5.2. Application of Cavitation in Dye Wastewater Treatment
  • 2.5.3. Application of Cavitation in Reducing Ammoniacal Nitrogen
  • 2.5.4. Case Study: Hydrodynamic Cavitation Using a Vortex Diode in Real Industrial Effluent Treatment
  • 2.6. Cost Considerations
  • 2.7. Summary
  • References
  • Chapter 3: Advanced Oxidation Technologies for Wastewater Treatment: An Overview
  • 3.1. Introduction
  • 3.2. Cavitation
  • 3.2.1. Acoustic Cavitation
  • 3.2.1.1. Reactors Used for Acoustic Cavitation
  • 3.2.1.2. Optimization of Operating Parameters for Acoustic Cavitation
  • 3.2.1.2.1. Effect of Frequency
  • 3.2.1.2.2. Effect of Irradiating Surface
  • 3.2.1.2.3. Intensity of Irradiation
  • 3.2.1.2.4. Effect of Physico-chemical Properties of Liquid
  • 3.2.2. Hydrodynamic Cavitation
  • 3.2.2.1. HC Reactor
  • 3.2.2.2. Optimum Operating Conditions.
  • 3.2.2.2.1. Effect of Operating Pressure and Cavitation Number
  • 3.2.2.2.2. Effect of Geometry of a Cavitating Device
  • 3.2.2.2.3. Effect of Physicochemical Properties of Liquid and Operating pH
  • 3.3. Fenton Chemistry
  • 3.3.1. Reactor Used for Fenton Oxidation
  • 3.3.2. Optimum Operating Conditions
  • 3.3.2.1. Operating pH
  • 3.3.2.2. Number of Ferrous Ions
  • 3.3.2.3. Concentration of H2O2
  • 3.4. Photocatalytic Oxidation
  • 3.4.1. Reactor Used for Photocatalytic Oxidation
  • 3.4.2. Optimum Operating Conditions
  • 3.4.2.1. Amount of Catalyst
  • 3.4.2.2. Reactor Designs
  • 3.4.2.3. Wavelength of Irradiation
  • 3.4.2.4. Radiant Flux
  • 3.4.2.5. Medium pH
  • 3.4.2.6. Effect of Ionic Species
  • 3.5. Hybrid Methods
  • 3.5.1. Cavitation Coupled with H2O2
  • 3.5.2. Cavitation Coupled with Ozone
  • 3.5.3. Cavitation Coupled with Photocatalysis
  • 3.5.4. Photo-Fenton (Fenton Process in the Presence of UV Light)
  • 3.5.5. Cavitation Coupled with Fenton
  • 3.6. Case Studies
  • 3.6.1. Intensification of Degradation of Imidacloprid in Aqueous Solutions using Combination of HC with Various AOPs
  • 3.6.1.1. Degradation of Imidacloprid Using HC-Based Hybrid Method
  • 3.6.2. Biodegradability Enhancement of Distillery Wastewater Using HC
  • 3.6.2.1. Treatment of B-DWW Using HC
  • 3.7. Summary
  • References
  • Chapter 4: Advanced Treatment Technology and Strategy for Water and Wastewater Management
  • 4.1. Introduction
  • 4.1.1. Principal Bottlenecks of Present Wastewater Treatment Systems
  • 4.2. Advanced Oxidation Treatment
  • 4.3. Fenton Process: Advanced Oxidation Technologies
  • 4.4. Electro-Fenton Advanced Oxidation Treatment
  • 4.5. Fenton Catalytic Reactor Advanced Oxidation Treatment
  • 4.6. Electrochemical Advanced Oxidation Treatment with BDD
  • 4.7. Implementation of Advanced Oxidation Technologies.
  • 4.7.1. Advanced Oxidation Process as an End-of Pipe Solution
  • 4.7.2. Advanced Oxidation Process as Standalone Treatment
  • 4.7.3. Advanced Oxidation Process as a Buffer for Biological Treatment
  • 4.8. Summary and Conclusions
  • References
  • Chapter 5: Novel Technologies for the Elimination of Pollutants and Hazardous Substances in the Chemical and Pharmaceutica ...
  • 5.1. Introduction
  • 5.2. The Bayer Loprox Process (Holzer et al., 1992)
  • 5.2.1. Examples of the Use of the Loprox Process (Holzer et al., 1992)
  • 5.3. Bayer Tower Biology (Holzer et al., 1992)
  • 5.3.1. Process Design Characteristics (Bayer, n.d.)
  • 5.3.2. Optimum Design of Injectors (Bayer, n.d.)
  • 5.3.3. Examples of Tower Biology (Zlokarnik, 1985)
  • 5.4. Summary of Loprox and Tower Biology
  • References
  • Chapter 6: Reorienting Waste Remediation Towards Harnessing Bioenergy: A Paradigm Shift
  • 6.1. Introduction
  • 6.2. Anaerobic Fermentation
  • 6.3. Biohydrogen Production from Waste Remediation
  • 6.3.1. Dark-Fermentation
  • 6.3.1.1. Selective Enrichment of Biocatalyst
  • 6.3.1.2. Factors Influencing Biohydrogen Production
  • 6.3.1.3. Bioreactor Configuration and Operational Mode
  • 6.3.2. Renewable Wastewater as Feedstock
  • 6.3.3. Thermochemical Process
  • 6.3.4. Process Limitations
  • 6.4. MFCs for Harvesting Bioelectricity from Waste Remediation
  • 6.4.1. Applications of MFC
  • 6.4.1.1. Bioelectricity Production
  • 6.4.1.1.1. Factors Influencing Bioelectrogenic Activity of MFC
  • 6.4.2. Bioelectrochemical Treatment
  • 6.4.3. Electrically Driven Biohydrogenesis
  • 6.4.4. Microbial Electrosynthesizer
  • 6.5. Bioplastics
  • 6.5.1. Bioplastics Synthesis from Wastewater
  • 6.5.2. Bioplastics Production from Wastewater and CO2
  • 6.6. Microalgae Cultivation Towards Biodiesel Production
  • 6.6.1. Mode of Nutrition
  • 6.6.2. Carbon Sequestration for Microalgae Growth.
  • 6.6.3. Preparation of Algal Fuel
  • 6.7. Summary
  • References
  • Further Reading
  • Chapter 7: Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario
  • 7.1. Introduction
  • 7.2. Urban Water Sector: Indian Scenario
  • 7.2.1. Water Requirements of the Urban Population
  • 7.2.2. Urban Water Supply System
  • 7.2.3. Urban Sewerage System
  • 7.2.4. Wastewater Treatment: Recycling and Reuse Option
  • 7.2.5. Water Balance for India
  • 7.2.5.1. Atmospheric Water Balance
  • 7.2.5.2. Hydrologic Water Balance
  • 7.2.6. Water Balance: Convergence to Recycling and Reuse
  • 7.2.7. Urban Sewage Quality and Quantity
  • 7.2.7.1. Sewage Generation and Existing Treatment Capacity
  • 7.2.7.2. Water Quality Requirement for Different Uses
  • 7.2.8. Urban Water Market
  • 7.3. Urban Sewage Treatment Options
  • 7.3.1. Urban Sewage: Primary and Secondary Treatment Options
  • 7.3.1.1. Primary Treatment
  • 7.3.1.2. Secondary Treatment
  • 7.3.2. Urban Wastewater: Tertiary Treatment Options
  • 7.3.3. Water Recycling and Reuse: Strategy
  • 7.4. Industrial Water Production and Reuse/Urban-Industry Joint Venture
  • 7.4.1. Sewage Reclamation Plant, the Rashtriya Chemicals and Fertilizers Plant, Chembur, Mumbai, India
  • 7.4.1.1. Salient Features
  • 7.4.2. Tertiary Treated Municipal Sewage Reuse, Madras Refineries Ltd. (MRL) and Madras Fertilizers Ltd., Chennai, India
  • 7.4.2.1. Salient Features
  • 7.4.3. RO Plant for Wastewater Reuse, Vadodara, Gujarat, India
  • 7.5. Urban-Industrial Water Sustainability: 2030
  • 7.5.1. Water Management, Policies, and Legislation Related to Water Use in Agriculture
  • 7.5.2. Water Management
  • 7.5.3. Finances
  • 7.5.4. Policies and Legislation
  • 7.6. Summary and Path Forward
  • References
  • Chapter 8: Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials.