|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_ocn884647664 |
003 |
OCoLC |
005 |
20231120111707.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140726s2014 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OPELS
|d N$T
|d E7B
|d COO
|d OCLCQ
|d B24X7
|d OCLCF
|d DEBSZ
|d KNOVL
|d OCLCQ
|d YDXCP
|d OCLCQ
|d REB
|d ZCU
|d OCLCQ
|d ITD
|d VT2
|d OCLCQ
|d K6U
|d MERER
|d OCLCQ
|d U3W
|d D6H
|d CEF
|d OCLCQ
|d RRP
|d OTZ
|d WYU
|d OL$
|d OCLCQ
|d SFB
|d OCLCQ
|d EYM
|d OCLCO
|d UUM
|d INARC
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 966377238
|a 1022272153
|a 1034612583
|a 1067220608
|a 1136465028
|
020 |
|
|
|a 9780444634030
|q (electronic bk.)
|
020 |
|
|
|a 0444634037
|q (electronic bk.)
|
020 |
|
|
|a 1306992885
|
020 |
|
|
|a 9781306992886
|
020 |
|
|
|a 0081013256
|
020 |
|
|
|a 9780081013250
|
020 |
|
|
|z 0080999689
|
020 |
|
|
|z 9781306992886
|
020 |
|
|
|z 1306992885
|
020 |
|
|
|z 9780080999685
|
024 |
3 |
|
|a 9781306992886
|
035 |
|
|
|a (OCoLC)884647664
|z (OCoLC)966377238
|z (OCoLC)1022272153
|z (OCoLC)1034612583
|z (OCoLC)1067220608
|z (OCoLC)1136465028
|
050 |
|
4 |
|a TD899.W65
|b R384 2014
|
072 |
|
7 |
|a TEC
|x 009010
|2 bisacsh
|
082 |
0 |
4 |
|a 668.109283
|
100 |
1 |
|
|a Ranade, Vivek V.
|
245 |
1 |
0 |
|a Industrial wastewater treatment, recycling and reuse /
|c Vivek V. Ranade, Vinay M. Bhandari.
|
260 |
|
|
|a Oxford :
|b Butterworth-Heinemann,
|c 2014.
|
300 |
|
|
|a 1 online resource (577 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India.
|
504 |
|
|
|a Includes bibliographical references and index.
|
546 |
|
|
|a English.
|
505 |
0 |
|
|a Front Cover -- Industrial Wastewater Treatment, Recycling, and Reuse -- Copyright -- Contents -- Preface -- Contributors -- Chapter 1: Industrial Wastewater Treatment, Recycling, and Reuse: An Overview -- 1.1. Water Usage in Industry -- 1.1.1. Overall Water Availability -- 1.1.2. Industrial Water Usage -- 1.1.3. Treatment, Recycling, and Reuse -- 1.2. Characterization of Industrial Wastewater -- 1.3. Strategy for Wastewater Management -- 1.3.1. Hierarchical Approach for Solving Pollution Problems -- 1.4. Separation Processes and Conventional Methods of Wastewater Treatment -- 1.4.1. Coagulation/Flocculation -- 1.4.1.1. Commonly Used Coagulants -- 1.4.2. Adsorption -- 1.4.3. Ion Exchange -- 1.4.4. Membrane Separation -- 1.4.5. Cavitation -- 1.4.6. Advanced Oxidation Processes -- 1.4.7. Incineration -- 1.4.8. Biological Method of Treatment -- 1.4.8.1. Aerobic Treatment -- 1.4.8.2. Anaerobic Treatment -- 1.4.8.3. Biological Treatment: Combination of Aerobic and Anaerobic Operations -- 1.4.9. Hybrid Separations -- 1.5. Industry Sectors Where Wastewater Treatment, Recycling, and Reuse Can Have a High Impact -- 1.5.1. Removal of Metals -- 1.5.2. Dye Wastewater Treatment -- 1.5.2.1. Indian Scenario -- 1.5.2.2. Global Scenario -- 1.5.2.3. Dye Wastewater Treatment: Overview and Recommendations -- 1.5.3. Food Industry -- 1.6. Industrial Wastewater Treatment Process Engineering -- 1.6.1. Newer Modifications in the Existing Methods -- 1.7. Advanced Modeling for Water Treatment -- 1.8. Cost of Wastewater Treatment and Possible Value Addition -- 1.9. Summary -- References -- Chapter 2: Advanced Physico-chemical Methods of Treatment for Industrial Wastewaters -- 2.1. Introduction -- 2.1.1. Selection of Method -- 2.1.2. Devising a Solution for Industrial Wastewater Treatment -- 2.2. Advanced Coagulation Processes -- 2.2.1. Types of Coagulant.
|
505 |
8 |
|
|a 2.2.2. How Coagulants Work and How to Select Coagulant -- 2.2.3. Advances in Coagulation Process and Practice -- 2.2.3.1. Electro-coagulation and Cavigulation -- 2.2.4. Case Study: Dye Wastewater Treatment -- 2.3. Advanced Adsorption and Ion Exchange Processes -- 2.3.1. Adsorbent: Screening and Selection -- 2.3.2. Equilibria and Kinetics of Adsorption -- 2.3.2.1. Adsorption Isotherm -- 2.3.2.2. Adsorption Kinetics -- 2.3.3. Recent Advances in Adsorption Processes -- 2.3.4. Ion Exchange -- 2.3.5. Ion Exchange: Advances and Applications in Wastewater Treatment -- 2.3.6. Case Study: Adsorption/Ion Exchange for Acid Removal -- 2.4. Other Advanced Physico-chemical Methods of Treatment -- 2.4.1. Membrane Separations -- 2.4.1.1. Membrane Variants in Wastewater Treatment -- 2.4.1.2. Membranes in Wastewater Treatment: Future Needs -- 2.4.2. Advanced Oxidation Processes -- 2.4.2.1. Electro-oxidation -- 2.5. Cavitation -- 2.5.1. Cavitation Using Tangential Flow/Vortex Diodes -- 2.5.2. Application of Cavitation in Dye Wastewater Treatment -- 2.5.3. Application of Cavitation in Reducing Ammoniacal Nitrogen -- 2.5.4. Case Study: Hydrodynamic Cavitation Using a Vortex Diode in Real Industrial Effluent Treatment -- 2.6. Cost Considerations -- 2.7. Summary -- References -- Chapter 3: Advanced Oxidation Technologies for Wastewater Treatment: An Overview -- 3.1. Introduction -- 3.2. Cavitation -- 3.2.1. Acoustic Cavitation -- 3.2.1.1. Reactors Used for Acoustic Cavitation -- 3.2.1.2. Optimization of Operating Parameters for Acoustic Cavitation -- 3.2.1.2.1. Effect of Frequency -- 3.2.1.2.2. Effect of Irradiating Surface -- 3.2.1.2.3. Intensity of Irradiation -- 3.2.1.2.4. Effect of Physico-chemical Properties of Liquid -- 3.2.2. Hydrodynamic Cavitation -- 3.2.2.1. HC Reactor -- 3.2.2.2. Optimum Operating Conditions.
|
505 |
8 |
|
|a 3.2.2.2.1. Effect of Operating Pressure and Cavitation Number -- 3.2.2.2.2. Effect of Geometry of a Cavitating Device -- 3.2.2.2.3. Effect of Physicochemical Properties of Liquid and Operating pH -- 3.3. Fenton Chemistry -- 3.3.1. Reactor Used for Fenton Oxidation -- 3.3.2. Optimum Operating Conditions -- 3.3.2.1. Operating pH -- 3.3.2.2. Number of Ferrous Ions -- 3.3.2.3. Concentration of H2O2 -- 3.4. Photocatalytic Oxidation -- 3.4.1. Reactor Used for Photocatalytic Oxidation -- 3.4.2. Optimum Operating Conditions -- 3.4.2.1. Amount of Catalyst -- 3.4.2.2. Reactor Designs -- 3.4.2.3. Wavelength of Irradiation -- 3.4.2.4. Radiant Flux -- 3.4.2.5. Medium pH -- 3.4.2.6. Effect of Ionic Species -- 3.5. Hybrid Methods -- 3.5.1. Cavitation Coupled with H2O2 -- 3.5.2. Cavitation Coupled with Ozone -- 3.5.3. Cavitation Coupled with Photocatalysis -- 3.5.4. Photo-Fenton (Fenton Process in the Presence of UV Light) -- 3.5.5. Cavitation Coupled with Fenton -- 3.6. Case Studies -- 3.6.1. Intensification of Degradation of Imidacloprid in Aqueous Solutions using Combination of HC with Various AOPs -- 3.6.1.1. Degradation of Imidacloprid Using HC-Based Hybrid Method -- 3.6.2. Biodegradability Enhancement of Distillery Wastewater Using HC -- 3.6.2.1. Treatment of B-DWW Using HC -- 3.7. Summary -- References -- Chapter 4: Advanced Treatment Technology and Strategy for Water and Wastewater Management -- 4.1. Introduction -- 4.1.1. Principal Bottlenecks of Present Wastewater Treatment Systems -- 4.2. Advanced Oxidation Treatment -- 4.3. Fenton Process: Advanced Oxidation Technologies -- 4.4. Electro-Fenton Advanced Oxidation Treatment -- 4.5. Fenton Catalytic Reactor Advanced Oxidation Treatment -- 4.6. Electrochemical Advanced Oxidation Treatment with BDD -- 4.7. Implementation of Advanced Oxidation Technologies.
|
505 |
8 |
|
|a 4.7.1. Advanced Oxidation Process as an End-of Pipe Solution -- 4.7.2. Advanced Oxidation Process as Standalone Treatment -- 4.7.3. Advanced Oxidation Process as a Buffer for Biological Treatment -- 4.8. Summary and Conclusions -- References -- Chapter 5: Novel Technologies for the Elimination of Pollutants and Hazardous Substances in the Chemical and Pharmaceutica ... -- 5.1. Introduction -- 5.2. The Bayer Loprox Process (Holzer et al., 1992) -- 5.2.1. Examples of the Use of the Loprox Process (Holzer et al., 1992) -- 5.3. Bayer Tower Biology (Holzer et al., 1992) -- 5.3.1. Process Design Characteristics (Bayer, n.d.) -- 5.3.2. Optimum Design of Injectors (Bayer, n.d.) -- 5.3.3. Examples of Tower Biology (Zlokarnik, 1985) -- 5.4. Summary of Loprox and Tower Biology -- References -- Chapter 6: Reorienting Waste Remediation Towards Harnessing Bioenergy: A Paradigm Shift -- 6.1. Introduction -- 6.2. Anaerobic Fermentation -- 6.3. Biohydrogen Production from Waste Remediation -- 6.3.1. Dark-Fermentation -- 6.3.1.1. Selective Enrichment of Biocatalyst -- 6.3.1.2. Factors Influencing Biohydrogen Production -- 6.3.1.3. Bioreactor Configuration and Operational Mode -- 6.3.2. Renewable Wastewater as Feedstock -- 6.3.3. Thermochemical Process -- 6.3.4. Process Limitations -- 6.4. MFCs for Harvesting Bioelectricity from Waste Remediation -- 6.4.1. Applications of MFC -- 6.4.1.1. Bioelectricity Production -- 6.4.1.1.1. Factors Influencing Bioelectrogenic Activity of MFC -- 6.4.2. Bioelectrochemical Treatment -- 6.4.3. Electrically Driven Biohydrogenesis -- 6.4.4. Microbial Electrosynthesizer -- 6.5. Bioplastics -- 6.5.1. Bioplastics Synthesis from Wastewater -- 6.5.2. Bioplastics Production from Wastewater and CO2 -- 6.6. Microalgae Cultivation Towards Biodiesel Production -- 6.6.1. Mode of Nutrition -- 6.6.2. Carbon Sequestration for Microalgae Growth.
|
505 |
8 |
|
|a 6.6.3. Preparation of Algal Fuel -- 6.7. Summary -- References -- Further Reading -- Chapter 7: Urban Wastewater Treatment for Recycling and Reuse in Industrial Applications: Indian Scenario -- 7.1. Introduction -- 7.2. Urban Water Sector: Indian Scenario -- 7.2.1. Water Requirements of the Urban Population -- 7.2.2. Urban Water Supply System -- 7.2.3. Urban Sewerage System -- 7.2.4. Wastewater Treatment: Recycling and Reuse Option -- 7.2.5. Water Balance for India -- 7.2.5.1. Atmospheric Water Balance -- 7.2.5.2. Hydrologic Water Balance -- 7.2.6. Water Balance: Convergence to Recycling and Reuse -- 7.2.7. Urban Sewage Quality and Quantity -- 7.2.7.1. Sewage Generation and Existing Treatment Capacity -- 7.2.7.2. Water Quality Requirement for Different Uses -- 7.2.8. Urban Water Market -- 7.3. Urban Sewage Treatment Options -- 7.3.1. Urban Sewage: Primary and Secondary Treatment Options -- 7.3.1.1. Primary Treatment -- 7.3.1.2. Secondary Treatment -- 7.3.2. Urban Wastewater: Tertiary Treatment Options -- 7.3.3. Water Recycling and Reuse: Strategy -- 7.4. Industrial Water Production and Reuse/Urban-Industry Joint Venture -- 7.4.1. Sewage Reclamation Plant, the Rashtriya Chemicals and Fertilizers Plant, Chembur, Mumbai, India -- 7.4.1.1. Salient Features -- 7.4.2. Tertiary Treated Municipal Sewage Reuse, Madras Refineries Ltd. (MRL) and Madras Fertilizers Ltd., Chennai, India -- 7.4.2.1. Salient Features -- 7.4.3. RO Plant for Wastewater Reuse, Vadodara, Gujarat, India -- 7.5. Urban-Industrial Water Sustainability: 2030 -- 7.5.1. Water Management, Policies, and Legislation Related to Water Use in Agriculture -- 7.5.2. Water Management -- 7.5.3. Finances -- 7.5.4. Policies and Legislation -- 7.6. Summary and Path Forward -- References -- Chapter 8: Phenolic Wastewater Treatment: Development and Applications of New Adsorbent Materials.
|
650 |
|
0 |
|a Sewage
|x Purification.
|
650 |
|
0 |
|a Water reuse.
|
650 |
|
6 |
|a Eaux us�ees
|x �Epuration.
|0 (CaQQLa)201-0008737
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Chemical & Biochemical.
|2 bisacsh
|
650 |
|
7 |
|a Sewage
|x Purification
|2 fast
|0 (OCoLC)fst01113752
|
650 |
|
7 |
|a Water reuse
|2 fast
|0 (OCoLC)fst01172046
|
700 |
1 |
|
|a Bhandari, Vinay M.
|
776 |
0 |
8 |
|i Print version:
|a Ranade, Vivek V.
|t Industrial Wastewater Treatment, Recycling and Reuse.
|d Burlington : Elsevier Science, �2014
|z 9780080999685
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780080999685
|z Texto completo
|