Solid state physics. Volume sixty five /
Solid state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego, California :
Elsevier,
2014.
|
Edición: | First edition. |
Colección: | Solid-state physics ;
volume 65. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Front Cover; Solid State Physics; Copyright; Contents; Contributors; Preface; Chapter One: Time-Domain Study of Magnetization Dynamics in Magnetic Thin Films and Micro- and Nanostructures; 1. General Introduction; 2. Theoretical Background; 2.1. Time Scales of Magnetization Dynamics; 2.2. Laser-Induced Ultrafast Magnetization Dynamics; 2.3. LLG Equation; 2.4. Ferromagnetic Resonance; 2.4.1. Macrospin Model of FMR: Kittel Formula; 2.4.2. Effective Demagnetizing Factors: Twofold and Fourfold Anisotropy; 2.5. Spin waves; 2.5.1. Introduction; 2.5.2. Exchange Spin Wave: Dispersion Relation.
- 2.5.3. Exchange Spin Waves in Thin Films2.5.4. Magnetostatic Modes in Thin Films; 2.5.5. Magnetostatic Modes in Confined Thin Ferromagnetic Elements; 2.6. Magneto-optical Kerr Effect; 2.6.1. Introduction; 2.6.2. Physical Origin of Magneto-Optical Effects; 2.6.3. Phenomenological Theory; 2.6.4. MOKE Geometries; 3. Background of TRMOKE; 3.1. Background of TRMOKE Experiments; 3.2. Laser-Induced Ultrafast Spin Dynamics; 3.3. Imaging of Propagating Spin Waves; 3.4. Time-Resolved Kerr Effect Measurement on Samples Deposited on Opaque Substrate; 3.5. All-Optical TRMOKE Microscope.
- 3.6. Benchtop TRMOKE Magnetometer4. Time-Resolved Imaging of Magnetization Dynamics in Microscopic Magnetic Elements; 4.1. Imaging Nonuniform Precessional Dynamics in Single Ferromagnetic Microstructures; 4.2. Imaging of Noise by Time-Resolved Kerr Microscopy; 4.3. Imaging of Spin-Wave Modes in Ferromagnetic Microwires; 4.4. Configurational Anisotropy in Precession Frequency and Damping; 4.5. Excitation and Imaging Individual Resonant Modes by Time-Resolved Kerr Microscopy; 4.6. Imaging Large Angle Reorientation of 2x2om2 CoFe/NiFe Element.
- 4.7. Imaging Magnetization Dynamics of Hard Disk Writers4.8. Conversion of Free Space Microwave to Magnonic Architecture: TRSKM Imaging; 5. Time-Resolved Magnetization Dynamics of Magnetic Multilayers; 5.1. Time-Resolved Magnetization Dynamics of Spin Valves and Exchange-Coupled Bilayers; 5.2. Ultrafast Magnetization Dynamics of Magnetic Multilayers with PMA; 6. Precessional Dynamics of Magnetic Nanodot Arrays; 6.1. Size-Dependent Crossover to Nonuniform Precession; 6.2. Dynamical Configurational Anisotropy; 6.3. Coupling Between Magnetic and Elastic Modes.
- 6.4. Collective Spin-Wave Dynamics in Arrays of Nanomagnets6.4.1. Imaging Collective Magnonic Modes; 6.4.2. Effect of Areal Density on Collective Magnonic Modes; 6.4.3. Effect of Lattice Symmetry on Collective Magnonic Modes; 6.4.4. Effect of Shape; 7. Magnetization Dynamics in Single Nanomagnets; 7.1. Cavity-Enhanced Magneto-Optical Measurements of Picosecond Dynamics of Single Nanomagnets; 7.2. Ultrafast Thermal Switching, Relaxation, and Precession of Individual Ferromagnetic Disks; 7.3. Effects of Magnetic Ground States on Magnetization Dynamics in Single Nanodisk.