Cargando…

Nanomagnetism : fundamentals and applications /

Nanomagnetism: Fundamentals and Applications is a complete guide to the theory and practical applications of magnetism at the nanometer scale. It covers a wide range of potential applications including materials science, medicine, and the environment. A tutorial covers the special magnetic propertie...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, England ; Amsterdam, Netherlands : Elsevier, 2014.
Colección:Frontiers of nanoscience ; Volume 6.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover; Nanomagnetism: Fundamentals and Applications; Copyright; Contents; Contributors; Preface; Chapter 1: Tutorial Section on Nanomagnetism; 1. Why is the Nanometer Scale Special in Magnetism?; 2. Formation of Domains in Magnetic Materials; 3. Domain Walls; 4. Single-Domain Particles; 5. The Blocking Temperature; 6. Magnetisation Dynamics in Nanoparticles Above the Blocking Temperature-Superparamagnetism; 7. Observation of Superparamagnetic Behaviour; 8. Magnetisation in Assemblies of Blocked Nanoparticles; 9. Enhanced Magnetic Moments in Nanoparticles; 9.1. Orbital Magnetic Moments.
  • 9.2. Spin Magnetic Moments10. The Effect of Nanoparticle Interactions on Magnetic Behaviour; 10.1. Volume Fractions Below the Percolation Threshold; 10.2. Volume Fractions Above the Percolation Threshold; References; Chapter 2: Spin and Orbital Magnetism in Free Nanoparticles: Size, Composition, and Temperature Effects; 1. Introduction; 2. Theoretical Background; 2.1. Density-Functional Theory; 2.2. Self-Consistent Tight-Binding Theory; 2.3. Spin-Fluctuation Theory; 3. Size and Environment Dependence on Spin Magnetism in Transition-Metal Clusters; 4. FeRh, CoRh, and CoPt Alloy Clusters.
  • 5. From Hund's Rules to Bulk Quenching of Orbital Magnetism6. Magnetic Anisotropy of Transition-Metal Clusters; 7. Tailoring the Magnetic Anisotropy of CoRh Nanoalloys; 8. Finite Temperature Magnetic Properties; 8.1. Low-Temperature Spin-Fluctuation Energies in TM Clusters; 8.2. Short-Range Magnetic Order in FeN and NiN; 8.3. MC Simulations of Itinerant Cluster Magnetism; 9. Conclusion; Acknowledgements; Abbreviations; References; Chapter 3: Novel Methods for the Synthesis of Magnetic Nanoparticles; 1. Introduction.
  • 2. Production of Iron Oxide Nanoparticles By Co-precipitation, Partial Oxidation of Ferrous Hydroxide and Thermal Decompo ... 3. Synthesis of MNPs By MTB; 3.1. Introduction to Magnetotactic Bacteria; 3.2. Microbiology and Diversity; 3.3. Magnetosome Membrane; 3.4. The Magnetosome Genes; 3.5. Magnetosome Proteins; 3.5.1. Iron Transport Proteins; 3.5.2. Magnetosome Chain Proteins; 3.5.3. Magnetite Interacting Proteins; 3.6. Magnetosome Formation Mechanism; 3.7. Exploiting Magnetosome Synthesis; 3.7.1. Enhanced Magnetosome Biosynthesis In Vivo; 3.7.2. Enhanced MNP Biokleptic Synthesis In Vitro.
  • 3.7.2.1. In Solution3.7.2.2. Surfaces; 3.8. Future Perspectives for Biological Synthesis; 4. Dendrimer Encapsulated Nanoparticle or DENs; 4.1. Synthesis and Characterisation of Dendrimer Encapsulated MNPs; 4.2. Monometallic Dendrimer Encapsulated MNPs; 4.3. Bimetallic Dendrimer Encapsulated MNPs; 4.4. Summary of Synthesis of Dendrimer Encapsulated MNPs; 5. Gas-Phase Synthesis of Nanoparticles and Nanoparticle Materials; 5.1. Cluster Beam Sources; 5.2. Production of Bimetallic Nanoparticles with Various Structures.