Cargando…

Symmetry of many-electron systems /

Symmetry of Many-Electron Systems discusses the group-theoretical methods applied to physical and chemical problems. Group theory allows an individual to analyze qualitatively the elements of a certain system in scope. The text evaluates the characteristics of the Schrodinger equations. It is proved...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kaplan, I. G. (Il��i�a Grigor�evich)
Otros Autores: Gerratt, J. (Traductor)
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: New York : Academic Press, 1975.
Colección:Physical chemistry ; volume 34.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn881851439
003 OCoLC
005 20231120111643.0
006 m o d
007 cr cnu---unuuu
008 140627s1975 nyua ob 000 0 eng d
010 |z  73000803  
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d YDXCP  |d N$T  |d EBLCP  |d N$T  |d OCLCF  |d DEBSZ  |d OCLCA  |d MERUC  |d IDB  |d OCLCQ  |d ESU  |d UKAHL  |d OCLCQ  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 895430654  |a 915134749  |a 1162072148  |a 1302561483 
020 |a 9781483191737  |q (electronic bk.) 
020 |a 1483191737  |q (electronic bk.) 
020 |z 9780123971500 
020 |z 0123971500 
035 |a (OCoLC)881851439  |z (OCoLC)895430654  |z (OCoLC)915134749  |z (OCoLC)1162072148  |z (OCoLC)1302561483 
041 1 |a eng  |h rus 
050 4 |a QC20  |b .K3713 1975 
072 7 |a SCI  |x 057000  |2 bisacsh 
082 0 4 |a 539.7/2112  |2 23 
084 |a 31.81  |2 bcl 
084 |a 31.21  |2 bcl 
084 |a 33.23  |2 bcl 
084 |a 33.56  |2 bcl 
088 |a 73000803 
100 1 |a Kaplan, I. G.  |q (Il��i�a Grigor�evich) 
240 1 0 |a Simmetri�i�a mnogo�elektronnykh sistem.  |l English 
245 1 0 |a Symmetry of many-electron systems /  |c I.G. Kaplan ; translated by J. Gerratt. 
264 1 |a New York :  |b Academic Press,  |c 1975. 
300 |a 1 online resource (xii, 370 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Physical chemistry, a series of monographs ;  |v volume 34 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed August 14, 2015). 
504 |a Includes bibliographical references. 
505 0 |a Front Cover; Symmetry of Many-Electron Systems; Copyright Page; Table of Contents; Translator's Note; Preface to Russian Edition; PART I: MATHEMATICAL APPARATUS; CHAPTER I. Basic Concepts and Theorems of Group Theory; Part 1. Properties of Group Operations; 1.1. Group Postulates; 1.2. Examples of Groups; 1.3. Isomorphism and Homomorphism; 1.4. Subgroups and Cosets; 1.5. Conjugate Elements. Classes; 1.6. Invariant Subgroups. Factor Groups; 1.7. Direct Products of Groups; 1.8. The Semidirect Product; Part 2. Representations of Groups; 1.9. Definition; 1.10. Vector Spaces 
505 8 |a 1.11. Reducibility of Representations1.12. Properties of Irreducible Representations; 1.13. Characters; 1.14. The Calculation of the Characters of Irreducible Representations; 1.15. The Decomposition of a Reducible Representation; 1.16. The Direct Product of Representations; 1.17. Clebsch-Gordan Coefficients; 1.18. The Regular Representation; 1.19. The Construction of Basis Functions for Irreducible Representations; CHAPTER II. The Permutation Group; Part 1. General Considerations; 2.1. Operations with Permutations; 2.2. Classes; 2.3. Young Diagrams and Irreducible Representations 
505 8 |a Part 2. The Standard Young-Yamanouchi OrthogonalRepresentation2.4. Young Tableaux; 2.5. Explicit Determination of the Matrices of the Standard Representation; 2.6. The Conjugate Representation; 2.7. The Construction of an Antisymmetric Function from the Basis Functions for Two Conjugate Representations; 2.8. Young Operators; 2.9. The Construction of Basis Functions for a StandardRepresentation from a Product of N Orthogonal Functions; Part 3. The Nonstandard Representation; 2.10. Definition; 2.11. The Transformation Matrix; 2.12. Some Generalizations 
505 8 |a 2.13. Young Operators in a Nonstandard RepresentationCHAPTER III. Groups of Linear Transformations; Part 1. Continuous Groups; 3.1. Definition. Distinctive Features of Continuous Groups; 3.2. Examples of Linear Groups; 3.3. Infinitesimal Operators; Part 2. The Three-Dimensional Rotation Group; 3.4. Rotation Operators and Angular Momentum Operators; 3.5. Irreducible Representations; 3.6. Reduction of the Direct Product of Two Irreducible Representations; 3.7. Reduction of t he Direct Product of k Irreducible Representations. 3n-j Symbols; Part 3. Point Groups 
520 |a Symmetry of Many-Electron Systems discusses the group-theoretical methods applied to physical and chemical problems. Group theory allows an individual to analyze qualitatively the elements of a certain system in scope. The text evaluates the characteristics of the Schrodinger equations. It is proved that some groups of continuous transformation from the Lie groups are useful in identifying conditions and in developing wavefunctions. A section of the book is devoted to the utilization of group-theoretical methods in quantal calculations on many-electron systems. The focus is on the use of group. 
546 |a English. 
650 0 |a Mathematical physics. 
650 0 |a Nuclear physics. 
650 0 |a Group theory. 
650 0 |a Quantum theory. 
650 6 |a Physique math�ematique.  |0 (CaQQLa)201-0008394 
650 6 |a Physique nucl�eaire.  |0 (CaQQLa)201-0002614 
650 6 |a Th�eorie des groupes.  |0 (CaQQLa)201-0000039 
650 6 |a Th�eorie quantique.  |0 (CaQQLa)201-0010146 
650 7 |a nuclear physics.  |2 aat  |0 (CStmoGRI)aat300054569 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Group theory  |2 fast  |0 (OCoLC)fst00948521 
650 7 |a Mathematical physics  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Nuclear physics  |2 fast  |0 (OCoLC)fst01040386 
650 7 |a Quantum theory  |2 fast  |0 (OCoLC)fst01085128 
700 1 |a Gerratt, J.,  |e translator. 
776 |z 1-322-29018-0 
776 |z 0-12-397150-0 
830 0 |a Physical chemistry ;  |v volume 34. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123971500  |z Texto completo