Cargando…

A method for studying model hamiltonians : a minimax principle for problems in statistical physics /

A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asym...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bogol�i�ubov, N. N. (Nikola�i Nikolaevich), 1909-1992
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Oxford ; New York : Pergamon Press, [1972]
Edición:First edition].
Colección:International series of monographs in natural philosophy ; v. 43.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn881851379
003 OCoLC
005 20231120111641.0
006 m o d
007 cr cnu---unuuu
008 140627s1972 enk ob 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCE  |d OCLCO  |d N$T  |d OCLCQ  |d EBLCP  |d DEBSZ  |d YDXCP  |d MERUC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 625199275  |a 681164436  |a 895430374  |a 974615405  |a 987675767  |a 1100944563 
020 |a 9781483148779  |q (electronic bk.) 
020 |a 1483148777  |q (electronic bk.) 
020 |z 008016743X 
020 |z 008016742X 
020 |z 9780080167428 
035 |a (OCoLC)881851379  |z (OCoLC)625199275  |z (OCoLC)681164436  |z (OCoLC)895430374  |z (OCoLC)974615405  |z (OCoLC)987675767  |z (OCoLC)1100944563 
041 1 |a eng  |h rus 
042 |a dlr 
050 4 |a QC175  |b .B66313 1972eb 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.1/3  |2 22 
084 |a 33.26  |2 bcl 
100 1 |a Bogol�i�ubov, N. N.  |q (Nikola�i Nikolaevich),  |d 1909-1992. 
245 1 2 |a A method for studying model hamiltonians :  |b a minimax principle for problems in statistical physics /  |c by N.N. Bogolyubov, Jr ; translated and edited by P.J. Shepherd. 
250 |a First edition]. 
264 1 |a Oxford ;  |a New York :  |b Pergamon Press,  |c [1972] 
300 |a 1 online resource (x, 170 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs in natural philosophy ;  |v volume 43 
504 |a Includes bibliographical references (pages 165-167). 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |6 880-01  |a Front Cover; A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics; Copyright Page; Table of Contents; SERIES EDITOR'S PREFACE; PREFACE; INTRODUCTION; 1. General Remarks; 2. Remarks an Quasi-Averages; CHAPTER 1. PROOF OF THE ASYMPTOTIC RELATIONS FOR THE MANY-TIME CORRELATION FUNCTIONS; 1. General Treatment of the Problem. Some Preliminary Results and Formulation of the Problem; 2. Equations of Motion and Auxiliary Operator Inequalities; 3. Additional Inequalities; 4. Bounds for the Difference of the Single-time Averages; 5. Remark (I). 
505 8 |a 6. Proof of the Closeness of Averages Constructed on the Basis of Model and Trial Hamiltonians for ""Normal"" Ordering of the Operators in the Averages 7. Proof of the Closeness of the Averages for Arbitrary Ordering of the Operators in the Averages; Remark (II); 8. Estimates of the Asymptotic Closeness of the Many-time Correlation Averages; CHAPTER 2. CONSTRUCTION OF A PROOF OF THE GENERALIZED ASYMPTOTIC RELATIONS FOR THE MANY-TIME CORRELATION AVERAGES; 1. Selection Rules and Calculation of the Averages; 2. Generalized Convergence; 3. Remark; 4. Proof of the Asymptotic Relations. 
505 8 |a 5. Properties of Partial Derivatives of the Free Energy Function. Theorem 3. III 6. Rider to Theorem 3. Ill and Construction of an Auxiliary Inequality; 7. On the Difficulties of Introducing Quasi-averages; 8. A New Method of Introducing Quasi-averages; 9. The Question of the Choice of Sign for the Source-terms; 10. The Construction of Upper-bound Inequalities in the Case when C=0; CHAPTER 4. MODEL SYSTEMS WITH POSITIVE AND NEGATIVE INTERACTION COMPONENTS; 1. Hamiltonian with Negative Coupling Constants (Repulsive Interaction). 
505 8 |a 2. Features of the Asymptotic Relations for the Free Energies in the Case of Systems with Positive Interaction 3. Bounds for the Free Energies and Correlation Functions; 4. Examination of an Auxiliary Problem; 5. Solution of the Question of Uniqueness; 6. Hamiltonians with Coupling Constants of Different Signs. The Minimax Principle; REFERENCES; INDEX. 
520 |a A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asymptotic relations for the many-time correlation functions. Chapter 2 details the construction of a proof of the generalized asymptotic relations for the many-time correlation averages. Chapter 3 explains the correlation functions for systems with four-fermion negative interaction. The last chapter sh. 
650 0 |a Statistical physics. 
650 0 |a Fermions. 
650 0 |a Hamiltonian operator. 
650 6 |a Physique statistique.  |0 (CaQQLa)201-0008397 
650 6 |a Fermions.  |0 (CaQQLa)201-0026315 
650 6 |a Op�erateur hamiltonien.  |0 (CaQQLa)201-0058893 
650 7 |a SCIENCE  |x Energy.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Physics  |x General.  |2 bisacsh 
650 7 |a Fermions.  |2 fast  |0 (OCoLC)fst00923003 
650 7 |a Hamiltonian operator.  |2 fast  |0 (OCoLC)fst00950771 
650 7 |a Statistical physics.  |2 fast  |0 (OCoLC)fst01132076 
650 1 7 |a Minimax problemen.  |2 gtt 
650 1 7 |a Statistische mechanica.  |2 gtt 
650 1 7 |a Hamiltonianen.  |2 gtt 
650 7 |a Fisica Estatistica (Mec Estatistica)  |2 larpcal 
650 7 |a Physique statistique.  |2 ram 
650 7 |a Fermions.  |2 ram 
650 7 |a Op�erateur hamiltonien.  |2 ram 
776 0 8 |i Print version:  |a Bogol�i�ubov, N.N. (Nikola�i Nikolaevich), 1909-1992.  |t Method for studying model hamiltonians.  |b First edition]  |z 008016742X  |w (DLC) 79183876  |w (OCoLC)521714 
830 0 |a International series of monographs in natural philosophy ;  |v v. 43. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080167428  |z Texto completo 
880 8 |6 505-01/(S  |a 5. Remark on the Construction of Uniform Bounds 6. Generalized Asymptotic Relations for the Green's Functions; 7. The Existence of Generalized Limits; CHAPTER 3. CORRELATION FUNCTIONS FOR SYSTEMS WITH FOURFERMION NEGATIVE INTERACTION; 1. Calculation of the Free Energy for Model Systems with Attraction; 2. Further Properties of the Expressions for the Free Energy; 3. Construction of Asymptotic Relations for the Free Energy; 4. On the Uniform Convergence with Respect to θ of the Free Energy Function and on Bounds for the Quantities δv.