Cargando…

Quantum mechanics: principles and formalism /

Quantum Mechanics: Principles and Formalism gives importance to the exposition of the fundamental bases of quantum mechanics. This text first discusses the physical basis of quantum theory. This book then provides some simple solutions of Schr�A�dinger's equation, eigenval...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McWeeny, R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Pergamon Press, [1972]
Edición:First edition].
Colección:International encyclopedia of physical chemistry and chemical physics. (Oxford). Classical and quantum mechanics ; volume 1.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Quantum Mechanics: Principles and Formalism; Copyright Page; Table of Contents; PREFACE; INTRODUCTION; Chapter 1. Physical Basis of Quantum Theory; 1.1. Particles and waves; 1.2. The Schr�odinger equation for a particle; 1.3. Probability density and probability current; 1.4. The classical limit for motion of a wave packet; Chapter 2. Some Simple Solutions of Schr�odinger's Equation; 2.1. The particle in a container; 2.2. The harmonic oscillator; 2.3. The hydrogen atom. Atomic units; 2.4. The free particle; 2.5. One-dimensional step potential with a finite potential height.
  • Chapter 3. Mathematical Digression3.1. Preliminaries. Operators and eigenvalue equations; 3.2. Eigenfunction expansions; 3.3. Generalization to many variables; 3.4. Linear vector spaces. Basic ideas; 3.5. Matrix representation of operators; 3.6. Change of representation; 3.7. Hermitian operators and eigenvalue equations in vector space; 3.8. Composition of vector spaces. Product space; Chapter 4. General Formulation of Quantum Mechanics; 4.1. The postulates; 4.2. The state vector and its time development; 4.3. The expectation value postulate; 4.4. Significance of the eigenvalue equation.
  • 4.5. The uncertainty principle4.6. Time-development and the energy-time uncertainty principle; 4.7. The completeness of eigenfunction sets; 4.8. Properties of the operators; 4.9. Electron spin; Chapter 5. General Theory of Representations; 5.1. Dirac notation. Discrete case; 5.2. An example. The harmonic oscillator; 5.3. Dirac notation. Continuous case; 5.4. Transformation theory. The momentum representation; 5.5. The Schr�odinger equation in momentum space; 5.6. Time-evolution. The Heisenberg representation; 5.7. Representation of incompletely specified states.
  • Appendix 1. The Schr�odinger Equation in Generalized CoordinatesAppendix 2. Separation of Partial Differential Equations; Appendix 3. Series Solution of Second-order Differential Equations; Appendix 4. Projection Operators and Normal Forms; Index.