Wave propagation in elastic solids /
Wave Propagation in Elastic Solids.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
North-Holland Pub. Co. : American Elsevier Pub. Co.,
1973.
|
Colección: | North-Holland series in applied mathematics and mechanics ;
v. 16. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Wave Propagation in Elastic Solids; Copyright Page; Dedication; Preface; Table of Contents; INTRODUCTION; The propagation of mechanical disturbances; Continuum mechanics; Outline of contents; Historical sketch; Bibliography; CHAPTER 1. ONE-DIMENSIONAL MOTION OF AN ELASTIC CONTINUUM; 1.1. Introduction; 1.2. Nonlinear continuum mechanics in one dimension; 1.3. Half-space subjected to uniform surface tractions; 1.4. Reflection and transmission; 1.5. Waves in one-dimensional longitudinal stress; 1.6. Harmonic waves; 1.7. Flux of energy in time-harmonic waves.
- 1.8. Fourier series and Fourier integrals1.9. The use of Fourier integrals; 1.10. Problems; CHAPTER 2. THE LINEARIZED THEORY OF ELASTICITY; 2.1. Introduction; 2.2. Notation and mathematical preliminaries; 2.3. Kinematics and dynamics; 2.3.1. Deformation; 2.3.2. Linear momentum and the stress tensor; 2.3.3. Balance of moment of momentum; 2.4. The homogeneous, isotropic, linearly elastic solid; 2.4.1. Stress-strain relations; 2.4.2. Stress and strain deviators; 2.4.3. Strain energy; 2.5. Problem statement in dynamic elasticity; 2.6. One-dimensional problems; 2.7. Two-dimensional problems.
- 2.8. The energy identity2.9. Hamilton's principle; 2.10. Displacement potentials; 2.11. Summary of equations in rectangular coordinates; 2.12. Orthogonal curvilinear coordinates; 2.13. Summary of equations in cylindrical coordinates; 2.14. Summary of equations in spherical coordinates; 2.15. The ideal fluid; CHAPTER 3. ELASTODYNAMIC THEORY; 3.1. Introduction; 3.2. Uniqueness of solution; 3.3. The dynamic reciprocal identity; 3.4. Scalar and vector potentials for the displacement field; 3.5. The Helmholtz decomposition of a vector; 3.6. Wave motion generated by body forces.
- 3.7. Radiation in two dimensions3.8. The basic singular solution of elastodynamics; 3.9. Three-dimensional integral representation; 3.10. Two-dimensional integral representations; 3.11. Boundary-value problems; 3.12. Steady-state time-harmonic response; 3.13. Problems; CHAPTER 4. ELASTIC WAVES IN AN UNBOUNDED MEDIUM; 4.1. Plane waves; 4.2. Time-harmonic plane waves; 4.3. Wave motions with polar symmetry; 4.4. Two-dimensional wave motions with axial symmetry; 4.5. Propagation of wavefronts; 4.6. Expansions behind the wavefront; 4.7. Axial shear waves by the method of characteristics.
- 4.8. Radial motions4.9. Homogeneous solutions of the wave equation; 4.10. Problems; CHAPTER 5. PLANE HARMONIC WAVES IN ELASTIC HALF-SPACES; 5.1. Reflection and refraction at a plane interface; 5.2. Plane harmonic waves; 5.3. Flux of energy in time-harmonic waves; 5.4. Joined half-spaces; 5.5. Reflection of SH-waves; 5.6. Reflection of P-waves; 5.7. Reflection of SV-waves; 5.8. Reflection and partition of energy at a free surface; 5.9. Reflection and refraction of SH-waves; 5.10. Reflection and refraction of P-waves; 5.11. Rayleigh surface waves; 5.12. Stoneley waves; 5.13. Slowness diagrams.