Cargando…

Fundamentals of applied probability and random processes /

This revised edition is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. Its clear writing style and homework problems make it ideal for the classroom or for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ibe, Oliver C. (Oliver Chukwudi), 1947- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, CA : Academic Press, 2014.
Edición:2nd edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1.1.Introduction
  • 1.2.Sample Space and Events
  • 1.3.Definitions of Probability
  • 1.3.1.Axiomatic Definition
  • 1.3.2.Relative-Frequency Definition
  • 1.3.3.Classical Definition
  • 1.4.Applications of Probability
  • 1.4.1.Information Theory
  • 1.4.2.Reliability Engineering
  • 1.4.3.Quality Control
  • 1.4.4.Channel Noise
  • 1.4.5.System Simulation
  • 1.5.Elementary Set Theory
  • 1.5.1.Set Operations
  • 1.5.2.Number of Subsets of a Set
  • 1.5.3.Venn Diagram
  • 1.5.4.Set Identities
  • 1.5.5.Duality Principle
  • 1.6.Properties of Probability
  • 1.7.Conditional Probability
  • 1.7.1.Total Probability and the Bayes' Theorem
  • 1.7.2.Tree Diagram
  • 1.8.Independent Events
  • 1.9.Combined Experiments
  • 1.10.Basic Combinatorial Analysis
  • 1.10.1.Permutations
  • 1.10.2.Circular Arrangement
  • 1.10.3.Applications of Permutations in Probability
  • 1.10.4.Combinations
  • 1.10.5.The Binomial Theorem
  • 1.10.6.Stirling's Formula
  • 1.10.7.The Fundamental Counting Rule
  • 1.10.8.Applications of Combinations in Probability
  • 1.11.Reliability Applications
  • 1.12.Chapter Summary
  • 1.13.Problems
  • Section 1.2 Sample Space and Events
  • Section 1.3 Definitions of Probability
  • Section 1.5 Elementary Set Theory
  • Section 1.6 Properties of Probability
  • Section 1.7 Conditional Probability
  • Section 1.8 Independent Events
  • Section 1.10 Combinatorial Analysis
  • Section 1.11 Reliability Applications
  • 2.1.Introduction
  • 2.2.Definition of a Random Variable
  • 2.3.Events Defined by Random Variables
  • 2.4.Distribution Functions
  • 2.5.Discrete Random Variables
  • 2.5.1.Obtaining the PMF from the CDF
  • 2.6.Continuous Random Variables
  • 2.7.Chapter Summary
  • 2.8.Problems
  • Section 2.4 Distribution Functions
  • Section 2.5 Discrete Random Variables
  • Section 2.6 Continuous Random Variables
  • 3.1.Introduction
  • 3.2.Expectation
  • 3.3.Expectation of Nonnegative Random Variables
  • 3.4.Moments of Random Variables and the Variance
  • 3.5.Conditional Expectations
  • 3.6.The Markov Inequality
  • 3.7.The Chebyshev Inequality
  • 3.8.Chapter Summary
  • 3.9.Problems
  • Section 3.2 Expected Values
  • Section 3.4 Moments of Random Variables and the Variance
  • Section 3.5 Conditional Expectations
  • Sections 3.6 and 3.7 Markov and Chebyshev Inequalities
  • 4.1.Introduction
  • 4.2.The Bernoulli Trial and Bernoulli Distribution
  • 4.3.Binomial Distribution
  • 4.4.Geometric Distribution
  • 4.4.1.CDF of the Geometric Distribution
  • 4.4.2.Modified Geometric Distribution
  • 4.4.3."Forgetfulness" Property of the Geometric Distribution
  • 4.5.Pascal Distribution
  • 4.5.1.Distinction Between Binomial and Pascal Distributions
  • 4.6.Hypergeometric Distribution
  • 4.7.Poisson Distribution
  • 4.7.1.Poisson Approximation of the Binomial Distribution
  • 4.8.Exponential Distribution
  • 4.8.1."Forgetfulness" Property of the Exponential Distribution
  • 4.8.2.Relationship between the Exponential and Poisson Distributions
  • 4.9.Erlang Distribution
  • 4.10.Uniform Distribution
  • 4.10.1.The Discrete Uniform Distribution
  • 4.11.Normal Distribution
  • 4.11.1.Normal Approximation of the Binomial Distribution
  • 4.11.2.The Error Function
  • 4.11.3.The Q-Function
  • 4.12.The Hazard Function
  • 4.13.Truncated Probability Distributions
  • 4.13.1.Truncated Binomial Distribution
  • 4.13.2.Truncated Geometric Distribution
  • 4.13.3.Truncated Poisson Distribution
  • 4.13.4.Truncated Normal Distribution
  • 4.14.Chapter Summary
  • 4.15.Problems
  • Section 4.3 Binomial Distribution
  • Section 4.4 Geometric Distribution
  • Section 4.5 Pascal Distribution
  • Section 4.6 Hypergeometric Distribution
  • Section 4.7 Poisson Distribution
  • Section 4.8 Exponential Distribution
  • Section 4.9 Erlang Distribution
  • Section 4.10 Uniform Distribution
  • Section 4.11 Normal Distribution
  • 5.1.Introduction
  • 5.2.Joint CDFs of Bivariate Random Variables
  • 5.2.1.Properties of the Joint CDF
  • 5.3.Discrete Bivariate Random Variables
  • 5.4.Continuous Bivariate Random Variables
  • 5.5.Determining Probabilities from a Joint CDF
  • 5.6.Conditional Distributions
  • 5.6.1.Conditional PMF for Discrete Bivariate Random Variables
  • 5.6.2.Conditional PDF for Continuous Bivariate Random Variables
  • 5.6.3.Conditional Means and Variances
  • 5.6.4.Simple Rule for Independence
  • 5.7.Covariance and Correlation Coefficient
  • 5.8.Multivariate Random Variables
  • 5.9.Multinomial Distributions
  • 5.10.Chapter Summary
  • 5.11.Problems
  • Section 5.3 Discrete Bivariate Random Variables
  • Section 5.4 Continuous Bivariate Random Variables
  • Section 5.6 Conditional Distributions
  • Section 5.7 Covariance and Correlation Coefficient
  • Section 5.9 Multinomial Distributions
  • 6.1.Introduction
  • 6.2.Functions of One Random Variable
  • 6.2.1.Linear Functions
  • 6.2.2.Power Functions
  • 6.3.Expectation of a Function of One Random Variable
  • 6.3.1.Moments of a Linear Function
  • 6.3.2.Expected Value of a Conditional Expectation
  • 6.4.Sums of Independent Random Variables
  • 6.4.1.Moments of the Sum of Random Variables
  • 6.4.2.Sum of Discrete Random Variables
  • 6.4.3.Sum of Independent Binomial Random Variables
  • 6.4.4.Sum of Independent Poisson Random Variables
  • 6.4.5.The Spare Parts Problem
  • 6.5.Minimum of Two Independent Random Variables
  • 6.6.Maximum of Two Independent Random Variables
  • 6.7.Comparison of the Interconnection Models
  • 6.8.Two Functions of Two Random Variables
  • 6.8.1.Application of the Transformation Method
  • 6.9.Laws of Large Numbers
  • 6.10.The Central Limit Theorem
  • 6.11.Order Statistics
  • 6.12.Chapter Summary
  • 6.13.Problems
  • Section 6.2 Functions of One Random Variable
  • Section 6.4 Sums of Random Variables
  • Sections 6.4 and 6.5 Maximum and Minimum of Independent Random Variables
  • Section 6.8 Two Functions of Two Random Variables
  • Section 6.10 The Central Limit Theorem
  • Section 6.11 Order Statistics
  • 7.1.Introduction
  • 7.2.The Characteristic Function
  • 7.2.1.Moment-Generating Property of the Characteristic Function
  • 7.2.2.Sums of Independent Random Variables
  • 7.2.3.The Characteristic Functions of Some Well-Known Distributions
  • 7.3.The s-Transform
  • 7.3.1.Moment-Generating Property of the s-Transform
  • 7.3.2.The s-Transform of the PDF of the Sum of Independent Random Variables
  • 7.3.3.The s-Transforms of Some Well-Known PDFs
  • 7.4.The z-Transform
  • 7.4.1.Moment-Generating Property of the z-Transform
  • 7.4.2.The z-Transform of the PMF of the Sum of Independent Random Variables
  • 7.4.3.The z-Transform of Some Welt-Known PMFs
  • 7.5.Random Sum of Random Variables
  • 7.6.Chapter Summary
  • 7.7.Problems
  • Section 7.2 Characteristic Functions
  • Section 7.3 s-Transforms
  • Section 7.4 z-Transforms
  • Section 7.5 Random Sum of Random Variables
  • 8.1.Introduction
  • 8.2.Descriptive Statistics
  • 8.3.Measures of Central Tendency
  • 8.3.1.Mean
  • 8.3.2.Median
  • 8.3.3.Mode
  • 8.4.Measures of Dispersion
  • 8.4.1.Range
  • 8.4.2.Quartiles and Percentiles
  • 8.4.3.Variance
  • 8.4.4.Standard Deviation
  • 8.5.Graphical and Tabular Displays
  • 8.5.1.Dot Plots
  • 8.5.2.Frequency Distribution
  • 8.5.3.Histograms
  • 8.5.4.Frequency Polygons
  • 8.5.5.Bar Graphs
  • 8.5.6.Pie Chart
  • 8.5.7.Box and Whiskers Plot
  • 8.6.Shape of Frequency Distributions: Skewness
  • 8.7.Shape of Frequency Distributions: Peakedness
  • 8.8.Chapter Summary
  • 8.9.Problems
  • Section 8.3 Measures of Central Tendency
  • Section 8.4 Measures of Dispersion
  • Section 8.6 Graphical Displays
  • Section 8.7 Shape of Frequency Distribution
  • 9.1.Introduction
  • 9.2.Sampling Theory
  • 9.2.1.The Sample Mean
  • 9.2.2.The Sample Variance
  • 9.2.3.Sampling Distributions
  • 9.3.Estimation Theory
  • 9.3.1.Point Estimate, Interval Estimate, and Confidence Interval
  • 9.3.2.Maximum Likelihood Estimation
  • 9.3.3.Minimum Mean Squared Error Estimation
  • 9.4.Hypothesis Testing
  • 9.4.1.Hypothesis Test Procedure
  • 9.4.2.Type I and Type II Errors
  • 9.4.3.One-Tailed and Two-Tailed Tests
  • 9.5.Regression Analysis
  • 9.6.Chapter Summary
  • 9.7.Problems
  • Section 9.2 Sampling Theory
  • Section 9.3 Estimation Theory
  • Section 9.4 Hypothesis Testing
  • Section 9.5 Regression Analysis
  • 10.1.Introduction
  • 10.2.Classification of Random Processes
  • 10.3.Characterizing a Random Process
  • 10.3.1.Mean and Autocorrelation Function
  • 10.3.2.The Autocovariance Function
  • 10.4.Crosscorrelation and Crosscovariance Functions
  • 10.4.1.Review of Some Trigonometric Identities
  • 10.5.Stationary Random Processes
  • 10.5.1.Strict-Sense Stationary Processes
  • 10.5.2.Wide-Sense Stationary Processes
  • 10.6.Ergodic Random Processes
  • 10.7.Power Spectral Density
  • 10.7.1.White Noise
  • 10.8.Discrete-Time Random Processes
  • 10.8.1.Mean, Autocorrelation Function and Autocovariance Function
  • 10.8.2.Power Spectral Density of a Random Sequence
  • 10.8.3.Sampling of Continuous-Time Processes
  • 10.9.Chapter Summary
  • 10.10.Problems
  • Section 10.3 Mean, Autocorrelation Function and Autocovariance Function
  • Section 10.4 Crosscorrelation and Crosscovariance Functions
  • Section 10.5 Wide-Sense Stationary Processes
  • Section 10.6 Ergodic Random Processes
  • Section 10.7 Power Spectral Density
  • Section 10.8 Discrete-Time Random Processes
  • 11.1.Introduction
  • 11.2.Overview of Linear Systems with Deterministic Inputs
  • 11.3.Linear Systems with Continuous-Time Random Inputs
  • 11.4.Linear Systems with Discrete-Time Random Inputs
  • 11.5.Autoregressive Moving Average Process
  • 11.5.1.Moving Average Process
  • 11.5.2.Autoregressive Process
  • 11.5.3.ARMA Process
  • 11.6.Chapter Summary
  • 11.7.Problems
  • Section 11.2 Linear Systems with Deterministic Input
  • Section 11.3 Linear Systems with Continuous Random Input
  • Section 11.4 Linear Systems with Discrete Random Input
  • Section 11.5 Autoregressive Moving Average Processes
  • 12.1.Introduction
  • 12.2.The Bernoulli Process
  • 12.3.Random Walk Process
  • 12.3.1.Symmetric Simple Random Walk