Fundamentals of applied probability and random processes /
This revised edition is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. Its clear writing style and homework problems make it ideal for the classroom or for...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego, CA :
Academic Press,
2014.
|
Edición: | 2nd edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1.1.Introduction
- 1.2.Sample Space and Events
- 1.3.Definitions of Probability
- 1.3.1.Axiomatic Definition
- 1.3.2.Relative-Frequency Definition
- 1.3.3.Classical Definition
- 1.4.Applications of Probability
- 1.4.1.Information Theory
- 1.4.2.Reliability Engineering
- 1.4.3.Quality Control
- 1.4.4.Channel Noise
- 1.4.5.System Simulation
- 1.5.Elementary Set Theory
- 1.5.1.Set Operations
- 1.5.2.Number of Subsets of a Set
- 1.5.3.Venn Diagram
- 1.5.4.Set Identities
- 1.5.5.Duality Principle
- 1.6.Properties of Probability
- 1.7.Conditional Probability
- 1.7.1.Total Probability and the Bayes' Theorem
- 1.7.2.Tree Diagram
- 1.8.Independent Events
- 1.9.Combined Experiments
- 1.10.Basic Combinatorial Analysis
- 1.10.1.Permutations
- 1.10.2.Circular Arrangement
- 1.10.3.Applications of Permutations in Probability
- 1.10.4.Combinations
- 1.10.5.The Binomial Theorem
- 1.10.6.Stirling's Formula
- 1.10.7.The Fundamental Counting Rule
- 1.10.8.Applications of Combinations in Probability
- 1.11.Reliability Applications
- 1.12.Chapter Summary
- 1.13.Problems
- Section 1.2 Sample Space and Events
- Section 1.3 Definitions of Probability
- Section 1.5 Elementary Set Theory
- Section 1.6 Properties of Probability
- Section 1.7 Conditional Probability
- Section 1.8 Independent Events
- Section 1.10 Combinatorial Analysis
- Section 1.11 Reliability Applications
- 2.1.Introduction
- 2.2.Definition of a Random Variable
- 2.3.Events Defined by Random Variables
- 2.4.Distribution Functions
- 2.5.Discrete Random Variables
- 2.5.1.Obtaining the PMF from the CDF
- 2.6.Continuous Random Variables
- 2.7.Chapter Summary
- 2.8.Problems
- Section 2.4 Distribution Functions
- Section 2.5 Discrete Random Variables
- Section 2.6 Continuous Random Variables
- 3.1.Introduction
- 3.2.Expectation
- 3.3.Expectation of Nonnegative Random Variables
- 3.4.Moments of Random Variables and the Variance
- 3.5.Conditional Expectations
- 3.6.The Markov Inequality
- 3.7.The Chebyshev Inequality
- 3.8.Chapter Summary
- 3.9.Problems
- Section 3.2 Expected Values
- Section 3.4 Moments of Random Variables and the Variance
- Section 3.5 Conditional Expectations
- Sections 3.6 and 3.7 Markov and Chebyshev Inequalities
- 4.1.Introduction
- 4.2.The Bernoulli Trial and Bernoulli Distribution
- 4.3.Binomial Distribution
- 4.4.Geometric Distribution
- 4.4.1.CDF of the Geometric Distribution
- 4.4.2.Modified Geometric Distribution
- 4.4.3."Forgetfulness" Property of the Geometric Distribution
- 4.5.Pascal Distribution
- 4.5.1.Distinction Between Binomial and Pascal Distributions
- 4.6.Hypergeometric Distribution
- 4.7.Poisson Distribution
- 4.7.1.Poisson Approximation of the Binomial Distribution
- 4.8.Exponential Distribution
- 4.8.1."Forgetfulness" Property of the Exponential Distribution
- 4.8.2.Relationship between the Exponential and Poisson Distributions
- 4.9.Erlang Distribution
- 4.10.Uniform Distribution
- 4.10.1.The Discrete Uniform Distribution
- 4.11.Normal Distribution
- 4.11.1.Normal Approximation of the Binomial Distribution
- 4.11.2.The Error Function
- 4.11.3.The Q-Function
- 4.12.The Hazard Function
- 4.13.Truncated Probability Distributions
- 4.13.1.Truncated Binomial Distribution
- 4.13.2.Truncated Geometric Distribution
- 4.13.3.Truncated Poisson Distribution
- 4.13.4.Truncated Normal Distribution
- 4.14.Chapter Summary
- 4.15.Problems
- Section 4.3 Binomial Distribution
- Section 4.4 Geometric Distribution
- Section 4.5 Pascal Distribution
- Section 4.6 Hypergeometric Distribution
- Section 4.7 Poisson Distribution
- Section 4.8 Exponential Distribution
- Section 4.9 Erlang Distribution
- Section 4.10 Uniform Distribution
- Section 4.11 Normal Distribution
- 5.1.Introduction
- 5.2.Joint CDFs of Bivariate Random Variables
- 5.2.1.Properties of the Joint CDF
- 5.3.Discrete Bivariate Random Variables
- 5.4.Continuous Bivariate Random Variables
- 5.5.Determining Probabilities from a Joint CDF
- 5.6.Conditional Distributions
- 5.6.1.Conditional PMF for Discrete Bivariate Random Variables
- 5.6.2.Conditional PDF for Continuous Bivariate Random Variables
- 5.6.3.Conditional Means and Variances
- 5.6.4.Simple Rule for Independence
- 5.7.Covariance and Correlation Coefficient
- 5.8.Multivariate Random Variables
- 5.9.Multinomial Distributions
- 5.10.Chapter Summary
- 5.11.Problems
- Section 5.3 Discrete Bivariate Random Variables
- Section 5.4 Continuous Bivariate Random Variables
- Section 5.6 Conditional Distributions
- Section 5.7 Covariance and Correlation Coefficient
- Section 5.9 Multinomial Distributions
- 6.1.Introduction
- 6.2.Functions of One Random Variable
- 6.2.1.Linear Functions
- 6.2.2.Power Functions
- 6.3.Expectation of a Function of One Random Variable
- 6.3.1.Moments of a Linear Function
- 6.3.2.Expected Value of a Conditional Expectation
- 6.4.Sums of Independent Random Variables
- 6.4.1.Moments of the Sum of Random Variables
- 6.4.2.Sum of Discrete Random Variables
- 6.4.3.Sum of Independent Binomial Random Variables
- 6.4.4.Sum of Independent Poisson Random Variables
- 6.4.5.The Spare Parts Problem
- 6.5.Minimum of Two Independent Random Variables
- 6.6.Maximum of Two Independent Random Variables
- 6.7.Comparison of the Interconnection Models
- 6.8.Two Functions of Two Random Variables
- 6.8.1.Application of the Transformation Method
- 6.9.Laws of Large Numbers
- 6.10.The Central Limit Theorem
- 6.11.Order Statistics
- 6.12.Chapter Summary
- 6.13.Problems
- Section 6.2 Functions of One Random Variable
- Section 6.4 Sums of Random Variables
- Sections 6.4 and 6.5 Maximum and Minimum of Independent Random Variables
- Section 6.8 Two Functions of Two Random Variables
- Section 6.10 The Central Limit Theorem
- Section 6.11 Order Statistics
- 7.1.Introduction
- 7.2.The Characteristic Function
- 7.2.1.Moment-Generating Property of the Characteristic Function
- 7.2.2.Sums of Independent Random Variables
- 7.2.3.The Characteristic Functions of Some Well-Known Distributions
- 7.3.The s-Transform
- 7.3.1.Moment-Generating Property of the s-Transform
- 7.3.2.The s-Transform of the PDF of the Sum of Independent Random Variables
- 7.3.3.The s-Transforms of Some Well-Known PDFs
- 7.4.The z-Transform
- 7.4.1.Moment-Generating Property of the z-Transform
- 7.4.2.The z-Transform of the PMF of the Sum of Independent Random Variables
- 7.4.3.The z-Transform of Some Welt-Known PMFs
- 7.5.Random Sum of Random Variables
- 7.6.Chapter Summary
- 7.7.Problems
- Section 7.2 Characteristic Functions
- Section 7.3 s-Transforms
- Section 7.4 z-Transforms
- Section 7.5 Random Sum of Random Variables
- 8.1.Introduction
- 8.2.Descriptive Statistics
- 8.3.Measures of Central Tendency
- 8.3.1.Mean
- 8.3.2.Median
- 8.3.3.Mode
- 8.4.Measures of Dispersion
- 8.4.1.Range
- 8.4.2.Quartiles and Percentiles
- 8.4.3.Variance
- 8.4.4.Standard Deviation
- 8.5.Graphical and Tabular Displays
- 8.5.1.Dot Plots
- 8.5.2.Frequency Distribution
- 8.5.3.Histograms
- 8.5.4.Frequency Polygons
- 8.5.5.Bar Graphs
- 8.5.6.Pie Chart
- 8.5.7.Box and Whiskers Plot
- 8.6.Shape of Frequency Distributions: Skewness
- 8.7.Shape of Frequency Distributions: Peakedness
- 8.8.Chapter Summary
- 8.9.Problems
- Section 8.3 Measures of Central Tendency
- Section 8.4 Measures of Dispersion
- Section 8.6 Graphical Displays
- Section 8.7 Shape of Frequency Distribution
- 9.1.Introduction
- 9.2.Sampling Theory
- 9.2.1.The Sample Mean
- 9.2.2.The Sample Variance
- 9.2.3.Sampling Distributions
- 9.3.Estimation Theory
- 9.3.1.Point Estimate, Interval Estimate, and Confidence Interval
- 9.3.2.Maximum Likelihood Estimation
- 9.3.3.Minimum Mean Squared Error Estimation
- 9.4.Hypothesis Testing
- 9.4.1.Hypothesis Test Procedure
- 9.4.2.Type I and Type II Errors
- 9.4.3.One-Tailed and Two-Tailed Tests
- 9.5.Regression Analysis
- 9.6.Chapter Summary
- 9.7.Problems
- Section 9.2 Sampling Theory
- Section 9.3 Estimation Theory
- Section 9.4 Hypothesis Testing
- Section 9.5 Regression Analysis
- 10.1.Introduction
- 10.2.Classification of Random Processes
- 10.3.Characterizing a Random Process
- 10.3.1.Mean and Autocorrelation Function
- 10.3.2.The Autocovariance Function
- 10.4.Crosscorrelation and Crosscovariance Functions
- 10.4.1.Review of Some Trigonometric Identities
- 10.5.Stationary Random Processes
- 10.5.1.Strict-Sense Stationary Processes
- 10.5.2.Wide-Sense Stationary Processes
- 10.6.Ergodic Random Processes
- 10.7.Power Spectral Density
- 10.7.1.White Noise
- 10.8.Discrete-Time Random Processes
- 10.8.1.Mean, Autocorrelation Function and Autocovariance Function
- 10.8.2.Power Spectral Density of a Random Sequence
- 10.8.3.Sampling of Continuous-Time Processes
- 10.9.Chapter Summary
- 10.10.Problems
- Section 10.3 Mean, Autocorrelation Function and Autocovariance Function
- Section 10.4 Crosscorrelation and Crosscovariance Functions
- Section 10.5 Wide-Sense Stationary Processes
- Section 10.6 Ergodic Random Processes
- Section 10.7 Power Spectral Density
- Section 10.8 Discrete-Time Random Processes
- 11.1.Introduction
- 11.2.Overview of Linear Systems with Deterministic Inputs
- 11.3.Linear Systems with Continuous-Time Random Inputs
- 11.4.Linear Systems with Discrete-Time Random Inputs
- 11.5.Autoregressive Moving Average Process
- 11.5.1.Moving Average Process
- 11.5.2.Autoregressive Process
- 11.5.3.ARMA Process
- 11.6.Chapter Summary
- 11.7.Problems
- Section 11.2 Linear Systems with Deterministic Input
- Section 11.3 Linear Systems with Continuous Random Input
- Section 11.4 Linear Systems with Discrete Random Input
- Section 11.5 Autoregressive Moving Average Processes
- 12.1.Introduction
- 12.2.The Bernoulli Process
- 12.3.Random Walk Process
- 12.3.1.Symmetric Simple Random Walk