Cargando…

Finite element analysis and design of steel and steel-concrete composite bridges /

In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and D...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ellobody, Ehab (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2015.
Edición:First edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges; Copyright; Contents; Chapter 1: Introduction; 1.1. General Remarks; 1.2. Types of Steel and Steel-Concrete Composite Bridges; 1.3. Literature Review of Steel and Steel-Concrete Composite Bridges; 1.3.1. General Remarks; 1.3.2. Recent Investigations on Steel Bridges; 1.3.3. Recent Investigations on Steel-Concrete Composite Bridges; 1.4. Finite Element Modeling of Steel and Steel-Concrete Composite Bridges; 1.5. Current Design Codes of Steel and Steel-Concrete Composite Bridges; References.
  • Chapter 2: Nonlinear Material Behavior of the Bridge Components2.1. General Remarks; 2.2. Nonlinear Material Properties of Structural Steel; 2.2.1. General; 2.2.2. Steel Stresses; 2.2.3. Ductility; 2.2.4. Fracture Toughness; 2.2.5. Weldability; 2.2.6. Weather Resistance; 2.2.7. Residual Stresses; 2.3. Nonlinear Material Properties of Concrete; 2.3.1. General; 2.3.2. Concrete Stresses; 2.3.3. Creep and Shrinkage; 2.3.4. Stress-Strain Relation of Concrete for Nonlinear Structural Analysis; 2.3.5. Stress-Strain Relations for the Design of Cross Sections; 2.3.6. Flexural Tensile Strength.
  • 2.3.7. Confined Concrete2.4. Nonlinear Material Properties of Reinforcement Bars; 2.4.1. General; 2.4.2. Properties; 2.5. Nonlinear Material Properties of Prestressing Tendons; 2.5.1. General; 2.5.2. Properties; 2.6. Nonlinear Behavior of Shear Connection; 2.6.1. General; 2.6.2. Shear Connectors; 2.6.3. Complete and Partial Shear Concoction; 2.6.4. Main Investigations on Shear Connection in Composite Beams with Solid Slabs; 2.6.5. Main Investigations on Shear Connection in Composite Beams with Profiled Steel Decking.
  • 2.6.6. Main Investigations on Shear Connection in Composite Beams with Prestressed Hollow Core Concrete Slabs2.6.7. Main Investigations on Numerical Modeling of Shear Connection; 2.6.8. Main Investigations on Numerical Modeling of Composite Girders; References; Chapter 3: Applied Loads and Stability of Steel and Steel-Concrete Composite Bridges; 3.1. General Remarks; 3.2. Dead Loads of Steel and Steel-Concrete Composite Bridges; 3.2.1. Dead Loads of Railway Steel Bridges; 3.2.2. Dead Loads of Highway Steel and Steel-Concrete Composite Bridges.
  • 3.3. Live Loads on Steel and Steel-Concrete Composite Bridges3.3.1. Live Loads for Railway Steel Bridges; 3.3.2. Live Loads for Highway Steel and Steel-Concrete Composite Bridges; 3.4. Horizontal Forces on Steel and Steel-Concrete Composite Bridges; 3.4.1. General; 3.4.2. Horizontal Forces on Railway Steel Bridges; 3.4.2.1. Centrifugal Forces; 3.4.2.2. Nosing Force; 3.4.2.3. Traction and Braking Forces; 3.4.2.4. Wind Forces; 3.4.3. Horizontal Forces on Highway Steel and Steel-Concrete Composite Bridges; 3.4.3.1. Braking and Acceleration Forces; 3.4.3.2. Centrifugal Forces.