Cargando…

An Introduction to Nonsmooth Analysis.

Nonsmooth Analysis is a relatively recent area of mathematical analysis. The literature about this subject consists mainly in research papers and books. The purpose of this book is to provide a handbook for undergraduate and graduate students of mathematics that introduce this interesting area in de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ferrera, Juan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier Science, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 SCIDIR_ocn880885101
003 OCoLC
005 20231117044938.0
006 m o d
007 cr |n|---|||||
008 140330s2013 vtu ob 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d EBLCP  |d OPELS  |d N$T  |d OSU  |d YDXCP  |d OCLCF  |d CDX  |d DEBSZ  |d OCLCQ  |d OCLCO  |d FEM  |d MERUC  |d OCLCQ  |d U3W  |d D6H  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 865332863  |a 968012600  |a 968977753  |a 1311346073 
020 |a 9780128008256 
020 |a 0128008253 
020 |z 9780128007310 
035 |a (OCoLC)880885101  |z (OCoLC)865332863  |z (OCoLC)968012600  |z (OCoLC)968977753  |z (OCoLC)1311346073 
050 4 |a QA402.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.6 
100 1 |a Ferrera, Juan. 
245 1 3 |a An Introduction to Nonsmooth Analysis. 
260 |a Burlington :  |b Elsevier Science,  |c 2013. 
300 |a 1 online resource (165 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Print version record. 
505 0 |a Half Title; Title Page; Copyright; Dedication; Contents; Preface; Acknowledgment; 1 Basic Concepts and Results; 1.1 Upper and Lower Limits; 1.2 Semicontinuity; 1.3 Differentiability; 1.4 Two Important Theorems; 1.5 Problems; 2 Convex Functions; 2.1 Convex Sets and Convex Functions; 2.2 Continuity of Convex Functions; 2.3 Separation Results; 2.4 Convexity and Differentiability; 2.5 Problems; 3 The Subdifferential of a Convex Function; 3.1 Subdifferential Properties; 3.2 Two Examples; 3.3 Problems; 4 The Subdifferential: General Case; 4.1 Definition and Basic Properties. 
505 8 |a 4.2 Geometrical Meaning of the Subdifferential4.3 Density of Subdifferentiability Points; 4.4 Proximal Subdifferential; 4.5 Problems; 5 Calculus; 5.1 Sum Rule; 5.2 Constrained Minima; 5.3 Chain Rule; 5.4 Regular Functions: Elementary Properties; 5.5 Mean Value Results; 5.6 Decreasing Functions; 5.7 Problems; 6 Lipschitz Functions and the Generalized Gradient; 6.1 Lipschitz Regular Functions; 6.2 The Generalized Gradient; 6.3 Generalized Jacobian; 6.4 Graphical Derivative; 6.5 Problems; 7 Applications; 7.1 Flow Invariant Sets; 7.2 Viscosity Solutions; 7.3 Solving Equations; 7.4 Problems. 
505 8 |a BibliographyIndex. 
520 |a Nonsmooth Analysis is a relatively recent area of mathematical analysis. The literature about this subject consists mainly in research papers and books. The purpose of this book is to provide a handbook for undergraduate and graduate students of mathematics that introduce this interesting area in detail. Includes different kinds of sub and super differentials as well as generalized gradientsIncludes also the main tools of the theory, as Sum and Chain Rules or Mean Value theoremsContent is introduced in an elementary way, developing many examples, allowing the reader to understand a theory which. 
504 |a Includes bibliographical references and index. 
650 0 |a Nonsmooth optimization. 
650 6 |a Optimisation non diff�erentiable.  |0 (CaQQLa)201-0339602 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Nonsmooth optimization  |2 fast  |0 (OCoLC)fst01038999 
776 0 8 |i Print version:  |a Ferrera, Juan.  |t An Introduction to Nonsmooth Analysis.  |d Burlington : Elsevier Science, �2013  |z 9780128007310 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128007310  |z Texto completo