Cargando…

Hypersingular integral equations in fracture analysis /

Hypersingular integral equations in fracture analysis explains how plane elastostatic crack problems may be formulated and solved in terms of hypersingular integral equations. The unknown functions in the hypersingular integral equations are the crack opening displacements. Once the hypersingular in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ang, W. T., 1961- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK : Woodhead Publishing, 2013.
Colección:Woodhead Publishing in mechanical engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn879243181
003 OCoLC
005 20231120111601.0
006 m o d
007 cr cnu---unuuu
008 140504s2013 enka ob 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d N$T  |d OPELS  |d OCLCF  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d U3W  |d D6H  |d OTZ  |d OCLCQ  |d WYU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCO 
019 |a 879074239  |a 965134355 
020 |a 0857094807  |q (electronic bk.) 
020 |a 9780857094803  |q (electronic bk.) 
020 |z 9780857094797  |q (hardback) 
020 |z 0857094793  |q (hardback) 
035 |a (OCoLC)879243181  |z (OCoLC)879074239  |z (OCoLC)965134355 
050 4 |a TA409  |b .A54 2013 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.1/1260151866  |2 23 
100 1 |a Ang, W. T.,  |d 1961-  |e author. 
245 1 0 |a Hypersingular integral equations in fracture analysis /  |c Whye-Teong Ang. 
264 1 |a Cambridge, UK :  |b Woodhead Publishing,  |c 2013. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Woodhead Publishing in mechanical engineering 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Hypersingular integral equations in fracture analysis; Copyright; Dedication; Contents; List of figures; List of tables; Preface; The author; Chapter 1 Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; 1.1 Elastic crack problems; 1.2 Linear fracture mechanics; 1.3 Equations of anisotropic elasticity; 1.4 Hadamard finite-part integrals; Chapter 2 Hypersingular integral equations for coplanar cracks in anisotropic elastic media; 2.1 Fourier integral representations for displacements and stresses. 
505 8 |a 2.2 Coplanar cracks in a homogeneous elastic full space2.3 A periodic array of coplanar cracks; 2.4 Coplanar cracks in an infinitely long homogeneous elastic slab; 2.5 Coplanar cracks between two dissimilar homogeneous elastic half spaces; 2.6 Stresses near crack tips; 2.7 Summary and remarks; Chapter 3 Numerical methods for solving hypersingular integral equations; 3.1 Hypersingular integral equations; 3.2 Collocation technique of Kaya and Erdogan; 3.3 Crack element method; 3.4 Summary; Chapter 4 Hypersingular boundary integral equation method for planar cracks in an anisotropic elastic body. 
505 8 |a 4.1 A plane elastostatic crack problem4.2 Hypersingular boundary integral equation method; 4.3 Hypersingular integral equations for arbitrarily located planar cracks in idealised elastic spaces; 4.4 Summary; Chapter 5 A numerical Green's function boundary integral approach for crack problems; 5.1 Special Green's functions for crack problems; 5.2 A numerical Green's function for arbitrarily located planar cracks; 5.3 A numerical Green's function boundary integral equation method for multiple planar cracks; 5.4 Summary and remarks; Chapter 6 Edge and curved cracks and piezoelectric cracks. 
505 8 |a 6.1 An edge crack problem6.2 A curved crack problem; 6.3 Cracks in piezoelectric solids; Appendix A Computer programmes for the hypersingular boundary integral equation method; Appendix B Computer programmes for the numerical Green's function boundary integral equation method; Bibliography; Index. 
520 |a Hypersingular integral equations in fracture analysis explains how plane elastostatic crack problems may be formulated and solved in terms of hypersingular integral equations. The unknown functions in the hypersingular integral equations are the crack opening displacements. Once the hypersingular integral equations are solved, the crack tip stress intensity factors, which play an important role in fracture analysis, may be easily computed. This title consists of six chapters: Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; Hypersingular integral e. 
650 0 |a Fracture mechanics  |x Mathematics. 
650 0 |a Integral equations  |x Numerical solutions. 
650 6 |a M�ecanique de la rupture  |0 (CaQQLa)201-0028000  |x Math�ematiques.  |0 (CaQQLa)201-0380112 
650 6 |a �Equations int�egrales  |x Solutions num�eriques.  |0 (CaQQLa)201-0041956 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Fracture mechanics  |x Mathematics  |2 fast  |0 (OCoLC)fst00933544 
650 7 |a Integral equations  |x Numerical solutions  |2 fast  |0 (OCoLC)fst00975509 
776 0 8 |i Print version:  |a Ang, W.T., 1961-  |t Hypersingular integral equations in fracture analysis  |z 0857094807 
830 0 |a Woodhead Publishing in mechanical engineering. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780857094797  |z Texto completo