|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn877032501 |
003 |
OCoLC |
005 |
20231120111551.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140418s2014 ne o 000 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d CDX
|d N$T
|d E7B
|d OPELS
|d OCLCF
|d UIU
|d YDXCP
|d EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d D6H
|d OTZ
|d OCLCQ
|d WYU
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 875819645
|a 881858647
|a 901624698
|a 1105195714
|a 1105567659
|a 1151734020
|
020 |
|
|
|a 9780123972279
|q (electronic bk.)
|
020 |
|
|
|a 0123972272
|q (electronic bk.)
|
020 |
|
|
|a 1306582636
|q (electronic bk.)
|
020 |
|
|
|a 9781306582636
|q (electronic bk.)
|
020 |
|
|
|z 9780123965202
|q (pbk.)
|
020 |
|
|
|z 0123965209
|q (pbk.)
|
035 |
|
|
|a (OCoLC)877032501
|z (OCoLC)875819645
|z (OCoLC)881858647
|z (OCoLC)901624698
|z (OCoLC)1105195714
|z (OCoLC)1105567659
|z (OCoLC)1151734020
|
050 |
|
4 |
|a TK5103.35
|
072 |
|
7 |
|a MED
|x 003040
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 0090002
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 059000
|2 bisacsh
|
082 |
0 |
4 |
|a 610.285468
|a 610.3
|b 23
|2 22
|
100 |
1 |
|
|a Hern�andez, Marco.
|
245 |
1 |
0 |
|a Body Area Networks using IEEE 802.15.6 :
|b Implementing the ultra wide band physical layer.
|
260 |
|
|
|a Amsterdam :
|b Academic Press,
|c 2014.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The market of wearable wireless medical sensors is experiencing a rapid growth and the associated telecommunications services for the healthcare sector are forecast to further increase in the next years. Medical body area networks (MBANs) allow the mobility of patients and medical personnel by facilitating the remote monitoring of patients suffering from chronic or risky diseases. Currently, MBANs are being introduced in unlicensed frequency bands, where the risk of mutual interference with other electronic devices radiating in the same band can be high. Thus, coexistence is an issue on which the research scientists have dedicated much effort. Ultra wideband (UWB) signals offer many advantages to MBANs, and some features of this technology can be exploited for effective implementation of services. UWB can help in several aspects, like spectrum efficiency, energy consumption and coexistence. This book discusses the main aspects, and, in particular, the coexistence, of MBANs based on the IEEE 802.15.6 Standard using UWB physical layer.
|
505 |
0 |
|
|a Half Title; Title Page; Copyright; Contents; 1 Survey and Coexistence Study of IEEE 802.15.6TM-2012 Body Area Networks, UWB PHY; 1 Introduction; 2 IEEE 802.15.6TM-2012 in a Nutshell; 2.1 Narrowband PHY; 2.2 Ultra-Wideband PHY; 2.3 HBC PHY; 2.4 Medium Access Control; 2.5 Security; 3 UWB Specification; 3.1 UWB Frame Format; 3.2 PSDU Construction; 3.3 Scrambler; 3.4 BCH Encoder; 3.5 Pad Bits; 3.6 Bit Interleaving; 4 PHR Header Frame; 5 Synchronization Header; 5.1 Preamble; 5.2 Start-of-Frame Delimiter; 6 IR-UWB Symbol Structure; 6.1 Pulse Waveform; 6.2 Pulse Scrambling; 6.2.1 Static Scrambling.
|
505 |
8 |
|
|a 6.2.2 Dynamic Scrambling7 UWB Modulations; 7.1 On-Off Signaling; 7.2 Pulse Shaping for PHR and PSDU; 8 Differentially Encoded PSK Modulation; 8.1 Pulse Shaping for PHR and PSDU; 8.2 Pulse Shaping for SHR; 9 IR-UWB PSDU Timing Parameters; 10 Operating Frequency Bands; 11 Transmit Spectrum Mask; 12 IR-UWB Pulse Shapes; 12.1 Chirp Pulse Shape; 12.2 Short Pulse Shapes; 13 Type II Hybrid ARQ Mechanism; 13.1 Inversion of Systematic Half Rate Invertible BCH Codes; 14 FM-UWB; 14.1 CP-GFSK Modulation; 14.2 Wideband FM; 15 Simulation Results; 16 Coexistence with Other UWB Systems; 16.1 Sensitivity.
|
505 |
8 |
|
|a 16.2 Sensitivity of the IEEE 802.15.6 UWB PHY16.3 UWB Interference; 16.4 UWB Interference (FM-UWB); 16.5 UWB Interference (IEEE 802.15.4a-2007); 16.6 UWB Interference (IEEE 802.15.4f-2012); 16.7 Interference Characterization; 16.7.1 Emitting Power; 16.8 Temporal Model; 16.9 Simulation Results; 17 Conclusions; References.
|
650 |
|
0 |
|a Body area networks (Electronics)
|
650 |
|
0 |
|a Biosensors.
|
650 |
|
2 |
|a Biosensing Techniques
|0 (DNLM)D015374
|
650 |
|
6 |
|a R�eseaux corporels (�Electronique)
|0 (CaQQLa)000286249
|
650 |
|
6 |
|a Biocapteurs.
|0 (CaQQLa)201-0165323
|
650 |
|
7 |
|a MEDICAL
|x Allied Health Services
|x Medical Technology.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Technology.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Biomedical.
|2 bisacsh
|
650 |
|
7 |
|a Biosensors
|2 fast
|0 (OCoLC)fst00832703
|
650 |
|
7 |
|a Body area networks (Electronics)
|2 fast
|0 (OCoLC)fst01893011
|
700 |
1 |
|
|a Mucchi, Lorenzo.
|
776 |
0 |
8 |
|i Print version:
|a Mucchi, Lorenzo.
|t Body Area Networks using IEEE 802.15.6.
|d Amsterdam : Academic Press 2014
|z 1306582636
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123965202
|z Texto completo
|