Multiscale materials modelling : fundamentals and applications /
Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the wa...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, England ; Boca Raton, Florida :
Woodhead Publishing Limited : CRC Press,
2007.
|
Colección: | Woodhead Publishing in materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Multiscalematerials modelling: Fundamentals andapplications; Copyright; Contents; Contributor contact details; Preface; 1 The role of ab initio electronic structure calculations in multiscale modelling of materials; 1.1 Introduction; 1.2 Basic equations of electronic structure calculations; 1.3 Illustrative examples; 1.4 Conclusions; 1.5 Acknowledgments; 1.6 References; 2 Modelling of dislocation behaviour at the continuum level; 2.1 Introduction; 2.2 Brief history; 2.3 Implementation; 2.4 Some current applications; 2.5 Extensions of current discrete dislocation dynamics trends.
- 2.6 Acknowledgments2.7 References; 3 Phase-field modelling of material microstructure; 3.1 Introduction; 3.2 Model description; 3.3 Advantages and disadvantages; 3.4 Recent developments and future opportunities; 3.5 Acknowledgments; 3.6 References; 4 Mesoscale modelling of grain growth and microstructure in polycrystalline materials; 4.1 Introduction; 4.2 Molecular dynamics simulation of grain growth; 4.3 Mesoscale simulation methodology; 4.4 Validation of mesoscale simulations; 4.5 Mesoscale simulation results; 4.6 Summary and conclusions; 4.7 Acknowledgments; 4.8 References.
- 5 Finite element and homogenization modelling of materials5.1 Introduction; 5.2 Representative volume element; 5.3 Homogenization techniques; 5.4 Computational micromechanics; 5.5 Multiscale coupling; 5.6 Future directions; 5.7 Acknowledgments; 5.8 References; 6 Grain-continuum modelling of material behaviour; 6.1 Introduction; 6.2 Representations and models; 6.3 Grain-continuum approach; 6.4 Grain-continuum examples; 6.5 Opportunities; 6.6 References; 7 Coupled atomistic/continuum modelling of plasticity in materials; 7.1 Introduction; 7.2 Automatic adaption: the QC method.
- 7.3 Kinematically identifying dislocations
- the CADD method7.4 Challenges and future directions; 7.5 References; 8 Multiscale modelling of carbon nanostructures; 8.1 Introduction to carbon nanotube dynamics; 8.2 Overlap TB/MD multiscale model; 8.3 Simulation results of carbon nanotubes under axial loading; 8.4 Introduction to hydrogen interaction with carbon nanostructures; 8.5 Hybrid calculations with multiscale ONIOM scheme; 8.6 Chemosorption of hydrogen atoms onto carbon nanotubes; 8.7 References; 9 Multiscale modelling of structural materials; 9.1 Introduction; 9.2 Structural materials.
- 9.3 Metals9.4 Polymers; 9.5 Ceramics; 9.6 Time scales; 9.7 Future trends; 9.8 References; Index.