High temperature deformation and fracture of materials /
The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theori...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge [England] ; Beijing, China :
Woodhead Publishing Limited : Science Press Limited,
2010.
|
Colección: | Woodhead Publishing in materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: pt. I High Temperature Deformation
- 1. Creep Behavior of Materials
- 1.1. Creep Curve
- 1.2. Stress and Temperature Dependence of Creep Rate
- 1.3. Stacking Fault Energy Effect
- 1.4. Grain Size Effect
- References
- 2. Evolution of Dislocation Substructures During Creep
- 2.1. Parameters of Dislocation Substructures and Their Measurements
- 2.2. Evolution of Dislocation Substructure during Creep
- 2.3. Dislocation Substructure of Steady State Creep
- 2.4. Inhomogeneous Dislocation Substructure and Long-Range Internal Stress
- References
- 3. Dislocation Motion at Elevated Temperatures
- 3.1. Thermally Activated Glide of Dislocation
- 3.2. Measurement of Internal Stress
- 3.3. Climb of Dislocations
- 3.4. Basic Equations of Recovery Creep
- 3.5. Mechanisms of Recovery
- References
- 4. Recovery-Creep Theories of Pure Metals
- 4.1. Introduction
- 4.2. Weertman Model
- 4.3. Models Considering Sub-Boundary.
- 4.4. Models Based on Dislocation Network
- 4.5. Creep Model Based on the Motion of Jogged Screw Dislocation
- 4.6. Summary of Recovery Creep Models
- 4.7. Soft and Hard Region Composite Model
- 4.8. Harper-Dorn Creep
- References
- 5. Creep of Solid Solution Alloys
- 5.1. Interaction Between Dislocation and Solute Atom
- 5.2. Creep Behavior of Solid Solution Alloys
- 5.3. Viscous Glide Velocity of Dislocations
- 5.4. Creep Controlled by Viscous Glide of Dislocations
- References
- 6. Creep of Second Phase Particles Strengthened Materials
- 6.1. Introduction
- 6.2. Arzt-Ashby Model
- 6.3. Creep Model Based on Attractive Particle-Dislocation Interaction
- 6.4. Interaction of Dislocation with Localized Particles
- 6.5. Mechanisms of Particle Strengthening
- 6.6. Grain Boundary Precipitation Strengthening
- References
- 7. Creep of Particulates Reinforced Composite Material
- 7.1. Creep Behavior of Particulates Reinforced Aluminium Matrix Composites
- 7.2. Determination of Threshold Stress
- 7.3. Creep Mechanisms and Role of Reinforcement Phase
- References.
- 8. High Temperature Deformation of Intermetallic Compounds
- 8.1. Crystal Structures, Dislocations and Planar Defects
- 8.2. Dislocation Core Structure
- 8.3. Slip Systems and Flow Stresses of Intermetallic Compounds
- 8.4. Creep of Intermetallic Compounds
- 8.5. Creep of Compound-Based ODS Alloys
- References
- 9. Diffusional Creep
- 9.1. Theory on Diffusional Creep
- 9.2. Accommodation of Diffusional Creep: Grain Boundary Sliding
- 9.3. Diffusional Creep Controlled by Boundary Reaction
- 9.4. Experimental Evidences of Diffusional Creep
- References
- 10. Superplasticity
- 10.1. Stability of Deformation
- 10.2. General Characteristics of Superplasticity
- 10.3. Microstructure Characteristics of Superplasticity
- 10.4. Grain Boundary Behaviors in Superplastic Deformation
- 10.5. Mechanism of Superplastic Deformation
- 10.6. The maximum Strain Rate for Superplasticity
- References
- 11. Mechanisms of Grain Boundary Sliding
- 11.1. Introduction
- 11.2. Intrinsic Grain Boundary Sliding
- 11.3. Extrinsic Grain Boundary Sliding
- References
- 12. Multiaxial Creep Models.
- 12.1. Uniaxial Creep Models
- 12.2. Mutiaxial Creep Models
- 12.3. Mutiaxial Steady State Creep Model
- 12.4. Stress Relaxation by Creep
- References
- pt. II High Temperature Fracture
- 13. Nucleation of Creep Cavity
- 13.1. Introduction
- 13.2. Nucleation Sites of Cavity
- 13.3. Theory of Cavity Nucleation
- 13.4. Cavity Nucleation Rate
- References
- 14. Creep Embrittlement by Segregation of Impurities
- 14.1. Nickel and Nickel-Base Superalloys
- 14.2. Low-Alloy Steels
- References
- 15. Diffusional Growth of Creep Cavities
- 15.1. Chemical Potential of Vacancies
- 15.2. Hull-Rimmer Model for Cavity Growth
- 15.3. Speight-Harris Model for Cavity Growth
- 15.4. The role of Surface Diffusion
- References
- 16. Cavity Growth by Coupled Diffusion and Creep
- 16.1. Monkman
- Grant Relation
- 16.2. Beer
- Speight Model
- 16.3. Edward
- Ashby Model
- 16.4. Chen
- Argon model
- 16.5. Cocks
- Ashby Model
- References
- 17. Constrained Growth of Creep Cavities
- 17.1. Introduction
- 17.2. Rice Model.
- 17.3. Raj
- Ghosh Model
- 17.4. Cocks
- Ashby Model
- References
- 18. Nucleation and Growth of Wedge-Type Microcracks
- 18.1. Introduction
- 18.2. Nucleation of Wedge-Type Cracks
- 18.3. The Propagation of Wedge-Type Cracks
- 18.4. Crack Growth by Cavitation
- References
- 19. Creep Crack Growth
- 19.1. Crack-Tip Stress Fields in Elastoplastic Body
- 19.2. Stress Field at Steady-State-Creep Crack Tip
- 19.3. The Crack Tip Stress Fields in Transition Period
- 19.4. Vitek Model for Creep Crack Tip Fields
- 19.5. The Influence of Creep Threshold Stress
- 19.6. The Experimental Results for Creep Crack Growth
- References
- 20. Creep Damage Mechanics
- 20.1. Introduction to the Damage Mechanics
- 20.2. Damage Variable and Effective Stress
- 20.3. Kachanov Creep Damage Theory
- 20.4. Rabotnov Creep Damage Theory
- 20.5. Three
- Dimensional Creep Damage Theory
- References
- 21. Creep Damage Physics
- 21.1. Introduction
- 21.2. Loss of External Section
- 21.3. Loss of Internal Section
- 21.4. Degradation of Microstructure.
- 21.5. Damage by Oxidation
- References
- 22. Prediction of Creep Rupture Life
- 22.1. Extrapolation Methods of Creep Rupture Life
- 22.2. & theta; Projection Method
- 22.3. Maruyama Parameter
- 22.4. Reliability of Prediction for Creep Rupture Property
- References
- 23. Creep-Fatigue Interaction
- 23.1. Creep Fatigue Waveforms
- 23.2. Creep-Fatigue Failure Maps
- 23.3. Holding Time Effects on Creep-Fatigue Lifetime
- 23.4. Fracture Mechanics of Creep Fatigue Crack Growth
- References
- 24. Prediction of Creep-Fatigue Life
- 24.1. Linear Damage Accumulation Rule
- 24.2. Strain Range Partitioning
- 24.3. Damage Mechanics Method
- 24.4. Damage Function Method
- 24.5. Empirical Methods
- References
- 25. Environmental Damage at High Temperature
- 25.1. Oxidation
- 25.2. Hot Corrosion
- 25.3. Carburization
- References.