Cargando…

High temperature deformation and fracture of materials /

The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theori...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhang, Junshan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; Beijing, China : Woodhead Publishing Limited : Science Press Limited, 2010.
Colección:Woodhead Publishing in materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: pt. I High Temperature Deformation
  • 1. Creep Behavior of Materials
  • 1.1. Creep Curve
  • 1.2. Stress and Temperature Dependence of Creep Rate
  • 1.3. Stacking Fault Energy Effect
  • 1.4. Grain Size Effect
  • References
  • 2. Evolution of Dislocation Substructures During Creep
  • 2.1. Parameters of Dislocation Substructures and Their Measurements
  • 2.2. Evolution of Dislocation Substructure during Creep
  • 2.3. Dislocation Substructure of Steady State Creep
  • 2.4. Inhomogeneous Dislocation Substructure and Long-Range Internal Stress
  • References
  • 3. Dislocation Motion at Elevated Temperatures
  • 3.1. Thermally Activated Glide of Dislocation
  • 3.2. Measurement of Internal Stress
  • 3.3. Climb of Dislocations
  • 3.4. Basic Equations of Recovery Creep
  • 3.5. Mechanisms of Recovery
  • References
  • 4. Recovery-Creep Theories of Pure Metals
  • 4.1. Introduction
  • 4.2. Weertman Model
  • 4.3. Models Considering Sub-Boundary.
  • 4.4. Models Based on Dislocation Network
  • 4.5. Creep Model Based on the Motion of Jogged Screw Dislocation
  • 4.6. Summary of Recovery Creep Models
  • 4.7. Soft and Hard Region Composite Model
  • 4.8. Harper-Dorn Creep
  • References
  • 5. Creep of Solid Solution Alloys
  • 5.1. Interaction Between Dislocation and Solute Atom
  • 5.2. Creep Behavior of Solid Solution Alloys
  • 5.3. Viscous Glide Velocity of Dislocations
  • 5.4. Creep Controlled by Viscous Glide of Dislocations
  • References
  • 6. Creep of Second Phase Particles Strengthened Materials
  • 6.1. Introduction
  • 6.2. Arzt-Ashby Model
  • 6.3. Creep Model Based on Attractive Particle-Dislocation Interaction
  • 6.4. Interaction of Dislocation with Localized Particles
  • 6.5. Mechanisms of Particle Strengthening
  • 6.6. Grain Boundary Precipitation Strengthening
  • References
  • 7. Creep of Particulates Reinforced Composite Material
  • 7.1. Creep Behavior of Particulates Reinforced Aluminium Matrix Composites
  • 7.2. Determination of Threshold Stress
  • 7.3. Creep Mechanisms and Role of Reinforcement Phase
  • References.
  • 8. High Temperature Deformation of Intermetallic Compounds
  • 8.1. Crystal Structures, Dislocations and Planar Defects
  • 8.2. Dislocation Core Structure
  • 8.3. Slip Systems and Flow Stresses of Intermetallic Compounds
  • 8.4. Creep of Intermetallic Compounds
  • 8.5. Creep of Compound-Based ODS Alloys
  • References
  • 9. Diffusional Creep
  • 9.1. Theory on Diffusional Creep
  • 9.2. Accommodation of Diffusional Creep: Grain Boundary Sliding
  • 9.3. Diffusional Creep Controlled by Boundary Reaction
  • 9.4. Experimental Evidences of Diffusional Creep
  • References
  • 10. Superplasticity
  • 10.1. Stability of Deformation
  • 10.2. General Characteristics of Superplasticity
  • 10.3. Microstructure Characteristics of Superplasticity
  • 10.4. Grain Boundary Behaviors in Superplastic Deformation
  • 10.5. Mechanism of Superplastic Deformation
  • 10.6. The maximum Strain Rate for Superplasticity
  • References
  • 11. Mechanisms of Grain Boundary Sliding
  • 11.1. Introduction
  • 11.2. Intrinsic Grain Boundary Sliding
  • 11.3. Extrinsic Grain Boundary Sliding
  • References
  • 12. Multiaxial Creep Models.
  • 12.1. Uniaxial Creep Models
  • 12.2. Mutiaxial Creep Models
  • 12.3. Mutiaxial Steady State Creep Model
  • 12.4. Stress Relaxation by Creep
  • References
  • pt. II High Temperature Fracture
  • 13. Nucleation of Creep Cavity
  • 13.1. Introduction
  • 13.2. Nucleation Sites of Cavity
  • 13.3. Theory of Cavity Nucleation
  • 13.4. Cavity Nucleation Rate
  • References
  • 14. Creep Embrittlement by Segregation of Impurities
  • 14.1. Nickel and Nickel-Base Superalloys
  • 14.2. Low-Alloy Steels
  • References
  • 15. Diffusional Growth of Creep Cavities
  • 15.1. Chemical Potential of Vacancies
  • 15.2. Hull-Rimmer Model for Cavity Growth
  • 15.3. Speight-Harris Model for Cavity Growth
  • 15.4. The role of Surface Diffusion
  • References
  • 16. Cavity Growth by Coupled Diffusion and Creep
  • 16.1. Monkman
  • Grant Relation
  • 16.2. Beer
  • Speight Model
  • 16.3. Edward
  • Ashby Model
  • 16.4. Chen
  • Argon model
  • 16.5. Cocks
  • Ashby Model
  • References
  • 17. Constrained Growth of Creep Cavities
  • 17.1. Introduction
  • 17.2. Rice Model.
  • 17.3. Raj
  • Ghosh Model
  • 17.4. Cocks
  • Ashby Model
  • References
  • 18. Nucleation and Growth of Wedge-Type Microcracks
  • 18.1. Introduction
  • 18.2. Nucleation of Wedge-Type Cracks
  • 18.3. The Propagation of Wedge-Type Cracks
  • 18.4. Crack Growth by Cavitation
  • References
  • 19. Creep Crack Growth
  • 19.1. Crack-Tip Stress Fields in Elastoplastic Body
  • 19.2. Stress Field at Steady-State-Creep Crack Tip
  • 19.3. The Crack Tip Stress Fields in Transition Period
  • 19.4. Vitek Model for Creep Crack Tip Fields
  • 19.5. The Influence of Creep Threshold Stress
  • 19.6. The Experimental Results for Creep Crack Growth
  • References
  • 20. Creep Damage Mechanics
  • 20.1. Introduction to the Damage Mechanics
  • 20.2. Damage Variable and Effective Stress
  • 20.3. Kachanov Creep Damage Theory
  • 20.4. Rabotnov Creep Damage Theory
  • 20.5. Three
  • Dimensional Creep Damage Theory
  • References
  • 21. Creep Damage Physics
  • 21.1. Introduction
  • 21.2. Loss of External Section
  • 21.3. Loss of Internal Section
  • 21.4. Degradation of Microstructure.
  • 21.5. Damage by Oxidation
  • References
  • 22. Prediction of Creep Rupture Life
  • 22.1. Extrapolation Methods of Creep Rupture Life
  • 22.2. & theta; Projection Method
  • 22.3. Maruyama Parameter
  • 22.4. Reliability of Prediction for Creep Rupture Property
  • References
  • 23. Creep-Fatigue Interaction
  • 23.1. Creep Fatigue Waveforms
  • 23.2. Creep-Fatigue Failure Maps
  • 23.3. Holding Time Effects on Creep-Fatigue Lifetime
  • 23.4. Fracture Mechanics of Creep Fatigue Crack Growth
  • References
  • 24. Prediction of Creep-Fatigue Life
  • 24.1. Linear Damage Accumulation Rule
  • 24.2. Strain Range Partitioning
  • 24.3. Damage Mechanics Method
  • 24.4. Damage Function Method
  • 24.5. Empirical Methods
  • References
  • 25. Environmental Damage at High Temperature
  • 25.1. Oxidation
  • 25.2. Hot Corrosion
  • 25.3. Carburization
  • References.