Cargando…

High temperature deformation and fracture of materials /

The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theori...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhang, Junshan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; Beijing, China : Woodhead Publishing Limited : Science Press Limited, 2010.
Colección:Woodhead Publishing in materials.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn874147015
003 OCoLC
005 20231120111536.0
006 m o d
007 cr cn|||||||||
008 140124t20102010enka ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d OPELS  |d OCLCF  |d LGG  |d IDEBK  |d YDXCP  |d EBLCP  |d N$T  |d DEBSZ  |d OCLCQ  |d U3W  |d D6H  |d WYU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 864369719  |a 867318586 
020 |a 9780857090805  |q (electronic bk.) 
020 |a 0857090801  |q (electronic bk.) 
020 |z 9780857090799 
035 |a (OCoLC)874147015  |z (OCoLC)864369719  |z (OCoLC)867318586 
050 4 |a TA418.24  |b .Z436 2010eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.11217  |2 23 
100 1 |a Zhang, Junshan. 
245 1 0 |a High temperature deformation and fracture of materials /  |c Jun-Shan Zhang. 
264 1 |a Cambridge [England] ;  |a Beijing, China :  |b Woodhead Publishing Limited :  |b Science Press Limited,  |c 2010. 
264 4 |c �2010 
300 |a 1 online resource (382 pages) :  |b illustrations, tables 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Woodhead Publishing in materials 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed January 23, 2014). 
520 |a The energy, petrochemical, aerospace and other industries all require materials able to withstand high temperatures. High temperature strength is defined as the resistance of a material to high temperature deformation and fracture. This important book provides a valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. Analyses creep behaviour of materials, the evolution of dislocation substructures during creep, dislocation motion at elevated temperatures and importantly, recovery-creep theories of pure metalsExamines high temperature fracture, including nucleation of creep cavity, diffusional growth and constrained growth of creep cavitiesA valuable reference to the main theories of high temperature deformation and fracture and the ways they can be used to predict failure and service life. 
505 0 0 |g Machine generated contents note:  |g pt. I  |t High Temperature Deformation --  |g 1.  |t Creep Behavior of Materials --  |g 1.1.  |t Creep Curve --  |g 1.2.  |t Stress and Temperature Dependence of Creep Rate --  |g 1.3.  |t Stacking Fault Energy Effect --  |g 1.4.  |t Grain Size Effect --  |t References --  |g 2.  |t Evolution of Dislocation Substructures During Creep --  |g 2.1.  |t Parameters of Dislocation Substructures and Their Measurements --  |g 2.2.  |t Evolution of Dislocation Substructure during Creep --  |g 2.3.  |t Dislocation Substructure of Steady State Creep --  |g 2.4.  |t Inhomogeneous Dislocation Substructure and Long-Range Internal Stress --  |t References --  |g 3.  |t Dislocation Motion at Elevated Temperatures --  |g 3.1.  |t Thermally Activated Glide of Dislocation --  |g 3.2.  |t Measurement of Internal Stress --  |g 3.3.  |t Climb of Dislocations --  |g 3.4.  |t Basic Equations of Recovery Creep --  |g 3.5.  |t Mechanisms of Recovery --  |t References --  |g 4.  |t Recovery-Creep Theories of Pure Metals --  |g 4.1.  |t Introduction --  |g 4.2.  |t Weertman Model --  |g 4.3.  |t Models Considering Sub-Boundary. 
505 0 0 |g 4.4.  |t Models Based on Dislocation Network --  |g 4.5.  |t Creep Model Based on the Motion of Jogged Screw Dislocation --  |g 4.6.  |t Summary of Recovery Creep Models --  |g 4.7.  |t Soft and Hard Region Composite Model --  |g 4.8.  |t Harper-Dorn Creep --  |t References --  |g 5.  |t Creep of Solid Solution Alloys --  |g 5.1.  |t Interaction Between Dislocation and Solute Atom --  |g 5.2.  |t Creep Behavior of Solid Solution Alloys --  |g 5.3.  |t Viscous Glide Velocity of Dislocations --  |g 5.4.  |t Creep Controlled by Viscous Glide of Dislocations --  |t References --  |g 6.  |t Creep of Second Phase Particles Strengthened Materials --  |g 6.1.  |t Introduction --  |g 6.2.  |t Arzt-Ashby Model --  |g 6.3.  |t Creep Model Based on Attractive Particle-Dislocation Interaction --  |g 6.4.  |t Interaction of Dislocation with Localized Particles --  |g 6.5.  |t Mechanisms of Particle Strengthening --  |g 6.6.  |t Grain Boundary Precipitation Strengthening --  |t References --  |g 7.  |t Creep of Particulates Reinforced Composite Material --  |g 7.1.  |t Creep Behavior of Particulates Reinforced Aluminium Matrix Composites --  |g 7.2.  |t Determination of Threshold Stress --  |g 7.3.  |t Creep Mechanisms and Role of Reinforcement Phase --  |t References. 
505 0 0 |g 8.  |t High Temperature Deformation of Intermetallic Compounds --  |g 8.1.  |t Crystal Structures, Dislocations and Planar Defects --  |g 8.2.  |t Dislocation Core Structure --  |g 8.3.  |t Slip Systems and Flow Stresses of Intermetallic Compounds --  |g 8.4.  |t Creep of Intermetallic Compounds --  |g 8.5.  |t Creep of Compound-Based ODS Alloys --  |t References --  |g 9.  |t Diffusional Creep --  |g 9.1.  |t Theory on Diffusional Creep --  |g 9.2.  |t Accommodation of Diffusional Creep: Grain Boundary Sliding --  |g 9.3.  |t Diffusional Creep Controlled by Boundary Reaction --  |g 9.4.  |t Experimental Evidences of Diffusional Creep --  |t References --  |g 10.  |t Superplasticity --  |g 10.1.  |t Stability of Deformation --  |g 10.2.  |t General Characteristics of Superplasticity --  |g 10.3.  |t Microstructure Characteristics of Superplasticity --  |g 10.4.  |t Grain Boundary Behaviors in Superplastic Deformation --  |g 10.5.  |t Mechanism of Superplastic Deformation --  |g 10.6.  |t The maximum Strain Rate for Superplasticity --  |t References --  |g 11.  |t Mechanisms of Grain Boundary Sliding --  |g 11.1.  |t Introduction --  |g 11.2.  |t Intrinsic Grain Boundary Sliding --  |g 11.3.  |t Extrinsic Grain Boundary Sliding --  |t References --  |g 12.  |t Multiaxial Creep Models. 
505 0 0 |g 12.1.  |t Uniaxial Creep Models --  |g 12.2.  |t Mutiaxial Creep Models --  |g 12.3.  |t Mutiaxial Steady State Creep Model --  |g 12.4.  |t Stress Relaxation by Creep --  |t References --  |g pt. II  |t High Temperature Fracture --  |g 13.  |t Nucleation of Creep Cavity --  |g 13.1.  |t Introduction --  |g 13.2.  |t Nucleation Sites of Cavity --  |g 13.3.  |t Theory of Cavity Nucleation --  |g 13.4.  |t Cavity Nucleation Rate --  |t References --  |g 14.  |t Creep Embrittlement by Segregation of Impurities --  |g 14.1.  |t Nickel and Nickel-Base Superalloys --  |g 14.2.  |t Low-Alloy Steels --  |t References --  |g 15.  |t Diffusional Growth of Creep Cavities --  |g 15.1.  |t Chemical Potential of Vacancies --  |g 15.2.  |t Hull-Rimmer Model for Cavity Growth --  |g 15.3.  |t Speight-Harris Model for Cavity Growth --  |g 15.4.  |t The role of Surface Diffusion --  |t References --  |g 16.  |t Cavity Growth by Coupled Diffusion and Creep --  |g 16.1.  |t Monkman -- Grant Relation --  |g 16.2.  |t Beer -- Speight Model --  |g 16.3.  |t Edward -- Ashby Model --  |g 16.4.  |t Chen -- Argon model --  |g 16.5.  |t Cocks -- Ashby Model --  |t References --  |g 17.  |t Constrained Growth of Creep Cavities --  |g 17.1.  |t Introduction --  |g 17.2.  |t Rice Model. 
505 0 0 |g 17.3.  |t Raj -- Ghosh Model --  |g 17.4.  |t Cocks -- Ashby Model --  |t References --  |g 18.  |t Nucleation and Growth of Wedge-Type Microcracks --  |g 18.1.  |t Introduction --  |g 18.2.  |t Nucleation of Wedge-Type Cracks --  |g 18.3.  |t The Propagation of Wedge-Type Cracks --  |g 18.4.  |t Crack Growth by Cavitation --  |t References --  |g 19.  |t Creep Crack Growth --  |g 19.1.  |t Crack-Tip Stress Fields in Elastoplastic Body --  |g 19.2.  |t Stress Field at Steady-State-Creep Crack Tip --  |g 19.3.  |t The Crack Tip Stress Fields in Transition Period --  |g 19.4.  |t Vitek Model for Creep Crack Tip Fields --  |g 19.5.  |t The Influence of Creep Threshold Stress --  |g 19.6.  |t The Experimental Results for Creep Crack Growth --  |t References --  |g 20.  |t Creep Damage Mechanics --  |g 20.1.  |t Introduction to the Damage Mechanics --  |g 20.2.  |t Damage Variable and Effective Stress --  |g 20.3.  |t Kachanov Creep Damage Theory --  |g 20.4.  |t Rabotnov Creep Damage Theory --  |g 20.5.  |t Three -- Dimensional Creep Damage Theory --  |t References --  |g 21.  |t Creep Damage Physics --  |g 21.1.  |t Introduction --  |g 21.2.  |t Loss of External Section --  |g 21.3.  |t Loss of Internal Section --  |g 21.4.  |t Degradation of Microstructure. 
505 0 0 |g 21.5.  |t Damage by Oxidation --  |t References --  |g 22.  |t Prediction of Creep Rupture Life --  |g 22.1.  |t Extrapolation Methods of Creep Rupture Life --  |g 22.2.  |t & theta; Projection Method --  |g 22.3.  |t Maruyama Parameter --  |g 22.4.  |t Reliability of Prediction for Creep Rupture Property --  |t References --  |g 23.  |t Creep-Fatigue Interaction --  |g 23.1.  |t Creep Fatigue Waveforms --  |g 23.2.  |t Creep-Fatigue Failure Maps --  |g 23.3.  |t Holding Time Effects on Creep-Fatigue Lifetime --  |g 23.4.  |t Fracture Mechanics of Creep Fatigue Crack Growth --  |t References --  |g 24.  |t Prediction of Creep-Fatigue Life --  |g 24.1.  |t Linear Damage Accumulation Rule --  |g 24.2.  |t Strain Range Partitioning --  |g 24.3.  |t Damage Mechanics Method --  |g 24.4.  |t Damage Function Method --  |g 24.5.  |t Empirical Methods --  |t References --  |g 25.  |t Environmental Damage at High Temperature --  |g 25.1.  |t Oxidation --  |g 25.2.  |t Hot Corrosion --  |g 25.3.  |t Carburization --  |t References. 
650 0 |a Materials at high temperatures. 
650 0 |a Deformations (Mechanics) 
650 0 |a Fracture mechanics. 
650 6 |a Mat�eriaux �a hautes temp�eratures.  |0 (CaQQLa)201-0024119 
650 6 |a D�eformations (M�ecanique)  |0 (CaQQLa)201-0011025 
650 6 |a M�ecanique de la rupture.  |0 (CaQQLa)201-0028000 
650 7 |a deformation.  |2 aat  |0 (CStmoGRI)aat300072976 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Deformations (Mechanics)  |2 fast  |0 (OCoLC)fst00889780 
650 7 |a Fracture mechanics  |2 fast  |0 (OCoLC)fst00933536 
650 7 |a Materials at high temperatures  |2 fast  |0 (OCoLC)fst01011904 
776 0 8 |i Print version:  |a Zhang, Jun-Shan.  |t High temperature deformation and fracture of materials.  |d Cambridge, [England] ; Beijing, China : Woodhead Publishing Limited : Science Press Limited, �2010  |h xv, 365 pages  |z 9780857090799 
830 0 |a Woodhead Publishing in materials. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780857090799  |z Texto completo