Cargando…

Differential forms : theory and practice /

Differential forms are utilized as a mathematical technique to help students, researchers, and engineers analyze and interpret problems where abstract spaces and structures are concerned, and when questions of shape, size, and relative positions are involved. Differential Forms has gained high recog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weintraub, Steven H. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, UK : Elsevier, 2014.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn873760139
003 OCoLC
005 20231120111534.0
006 m o d
007 cr |n|||||||||
008 140314s2014 enk ob 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OPELS  |d UMI  |d N$T  |d COO  |d CHVBK  |d DEBBG  |d OCLCQ  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d OCLCO  |d U3W  |d D6H  |d CEF  |d OTZ  |d LQU  |d ESU  |d OCLCQ  |d SRU  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 871224203  |a 875004005  |a 1105177646  |a 1105575288 
020 |a 0123946174  |q (electronic bk.) 
020 |a 9780123946171  |q (electronic bk.) 
020 |z 9780123944030  |q (alk. paper) 
020 |z 0123944031  |q (alk. paper) 
035 |a (OCoLC)873760139  |z (OCoLC)871224203  |z (OCoLC)875004005  |z (OCoLC)1105177646  |z (OCoLC)1105575288 
050 4 |a QA381  |b .W45 2014 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.37  |2 23 
100 1 |a Weintraub, Steven H.,  |e author. 
245 1 0 |a Differential forms :  |b theory and practice /  |c by Steve Weintraub. 
250 |a Second edition. 
264 1 |a Oxford, UK :  |b Elsevier,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Half Title; Title Page; Copyright; Dedication; Contents; Preface; 1 Differential Forms in Rn, I; 1.0 Euclidean spaces, tangent spaces, and tangent vector fields; 1.1 The algebra of differential forms; 1.2 Exterior differentiation; 1.3 The fundamental correspondence; 1.4 The Converse of Poincar�e's Lemma, I; 1.5 Exercises; 2 Differential Forms in Rn, II; 2.1 1-Forms; 2.2 k-Forms; 2.3 Orientation and signed volume; 2.4 The converse of Poincar�e's Lemma, II; 2.5 Exercises; 3 Push-forwards and Pull-backs in Rn; 3.1 Tangent vectors; 3.2 Points, tangent vectors, and push-forwards. 
505 8 |a 3.3 Differential forms and pull-backs3.4 Pull-backs, products, and exterior derivatives; 3.5 Smooth homotopies and the Converse of Poincar�e's Lemma, III; 3.6 Exercises; 4 Smooth Manifolds; 4.1 The notion of a smooth manifold; 4.2 Tangent vectors and differential forms; 4.3 Further constructions; 4.4 Orientations of manifolds'227intuitive discussion; 4.5 Orientations of manifolds'227careful development; 4.6 Partitions of unity; 4.7 Smooth homotopies and the Converse of Poincar�e's Lemma in general; 4.8 Exercises; 5 Vector Bundles and the Global Point of View. 
505 8 |a 5.1 The definition of a vector bundle5.2 The dual bundle, and related bundles; 5.3 The tangent bundle of a smooth manifold, and related bundles; 5.4 Exercises; 6 Integration of Differential Forms; 6.1 Definite integrals in textmathbbRn; 6.2 Definition of the integral in general; 6.3 The integral of a 0-form over a point; 6.4 The integral of a 1-form over a curve; 6.5 The integral of a 2-form over a surface; 6.6 The integral of a 3-form over a solid body; 6.7 Chains and integration on chains; 6.8 Exercises; 7 The Generalized Stokes's Theorem; 7.1 Statement of the theorem. 
505 8 |a 7.2 The fundamental theorem of calculus and its analog for line integrals7.3 Cap independence; 7.4 Green's and Stokes's theorems; 7.5 Gauss's theorem; 7.6 Proof of the GST; 7.7 The converse of the GST; 7.8 Exercises; 8 de Rham Cohomology; 8.1 Linear and homological algebra constructions; 8.2 Definition and basic properties; 8.3 Computations of cohomology groups; 8.4 Cohomology with compact supports; 8.5 Exercises; Index; A; B; C; D; E; F; G; H; I; L; M; N; O; P; R; S; T; V; W. 
520 |a Differential forms are utilized as a mathematical technique to help students, researchers, and engineers analyze and interpret problems where abstract spaces and structures are concerned, and when questions of shape, size, and relative positions are involved. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems through mathematical analysis on a computer. Differential Forms, 2nd Edition, is a solid resource for students and prof. 
650 0 |a Differential forms. 
650 6 |a Formes diff�erentielles.  |0 (CaQQLa)201-0020604 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential forms  |2 fast  |0 (OCoLC)fst00893491 
650 7 |a Differentialform  |2 gnd  |0 (DE-588)4149772-7 
776 0 8 |i Print version:  |z 9780123944030  |z 0123944031  |w (DLC) 2013035820 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123944030  |z Texto completo