Fundamentals of Advanced Omics Technologies.
Fundamentals of Advanced Omics Technologies: From Genes to Metabolites covers the fundamental aspects of the new instrumental and methodological developments in omics technologies, including those related to genomics, transcriptomics, epigenetics, proteomics and metabolomics, as well as other omics...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Burlington :
Elsevier Science,
2014.
|
Colección: | Comprehensive analytical chemistry.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Fundamentals of Advanced Omics Technologies: From Genes to Metabolites; Copyright; Contents; Contributors to Volume 63; Series Editor� s Preface; Preface; Chapter 1: DNA Microarrays Technology: Overview and Current Status; 1. Introduction and Overview; 1.1. A Brief History of Microarrays; 2. Types of DNA Microarrays; 2.1. Spotted or Printed Microarrays; 2.2. In Situ Synthesized Microarrays; 2.3. High-Density Bead Arrays; 3. Applications of Microarrays; 3.1. Microarrays for Gene Expression Analysis; 3.1.1. One- and Two-Channel Microarrays.
- 3.1.2. Gene Expression Microarray Experiments3.1.3. Measuring Gene Expression; 3.1.3.1. Relative Expression with Two-Channel Microarray; 3.1.3.2. Absolute Expression with One-Channel Microarray; 3.2. SNP Arrays for Variation Analysis and Genotyping; 3.3. CGH Arrays for Comparative Genomic Hybridization; 3.4. ChIP-on-Chip Arrays for Transcription Factor Binding Analysis; 3.5. Arrays for the Analysis of Alternative Splicing and Related Issues; 4. Microarray Bioinformatics; 4.1. The MIAME Standard; 4.2. Microarray Databases; 5. Discussion and Concluding Remarks; References.
- Chapter 2: Challenges and Future Trends in DNA Microarray Analysis1. Introduction; 2. Toward Microarray POC Devices; 2.1. Microfluidic Microarrays; 2.2. Label-Free Detection; 2.3. Miniaturized Nanoarray Platforms; 2.4. Integrated LOC Devices; 3. Validity of Microarray Data; 4. Clinical Adoption; 5. Future Trends of Microarray; 6. Conclusion; References; Chapter 3: Next-Generation Sequencing: New Tools to Solve Old Challenges; 1. Introduction; 2. Basis for NGS; 3. Sample Preparation for NGS; 3.1. Clonal Amplification; 3.1.1. Emulsion PCR; 3.1.2. Solid-Phase Amplification.
- 3.2. Single-Molecule Sequencing4. Sequencing Techniques; 4.1. Sequencing-by-Synthesis; 4.1.1. Single-Nucleotide Addition; 4.1.1.1. Pyrosequencing Technology (454 Life Science/Roche); 4.1.1.2. Semiconductor Technology (Ion Torrent/Ion Proton PGM/Life Technologies); 4.1.2. Cyclic-Reversible Termination; 4.1.2.1. Illumina Technology; 4.1.2.2. Helicos Bioscience Technology; 4.2. Sequencing-by-Ligation; 4.3. Other Sequencing Technologies; 4.3.1. Single-Molecule Real-Time Sequencing; 4.3.2. Sequencing by Fluorescence Resonance Energy Transfer of Single Pairs; 4.3.3. Nanopore Sequencing.
- 4.3.4. Other Third-Generation Sequencers5. NGS Data Analysis; 6. Main Applications of NGS; 6.1. Whole-Genome Sequencing; 6.2. Targeted Region Resequencing; 6.3. Metagenomics; 6.4. RNA-Sequencing; 6.5. Other NGS Applications; 6.5.1. Epigenetics; 6.5.2. Interactomics; 7. Integrating Omics Data; References; Chapter 4: Omics Tools for the Genome-Wide Analysis of Methylation and Histone Modifications; 1. Omics Meets Epigenetics; 1.1. Omics; 1.2. Epigenetics; 1.2.1. DNA Methylation; 1.2.2. Histone Modifications; 1.2.2.1. Histone Code Hypothesis; 1.2.2.2. The Signaling Pathway Model.