Cargando…

Control and optimal control theories with applications /

This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, dise...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Burghes, David N.
Otros Autores: Graham, Alexander, 1936-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester : Horwood, 2004.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn869282461
003 OCoLC
005 20231120111518.0
006 m o d
007 cr cnu---unuuu
008 140128s2004 enkd ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d OPELS  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d D6H  |d OCLCQ  |d VLY  |d S2H  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 871224806  |a 1162367534 
020 |a 9780857099495  |q (electronic bk.) 
020 |a 0857099493  |q (electronic bk.) 
020 |z 190427501X 
020 |z 9781904275015 
035 |a (OCoLC)869282461  |z (OCoLC)871224806  |z (OCoLC)1162367534 
050 4 |a QA402.3 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.642  |2 22 
100 1 |a Burghes, David N. 
245 1 0 |a Control and optimal control theories with applications /  |c David Burghes, Alexander Graham. 
264 1 |a Chichester :  |b Horwood,  |c 2004. 
300 |a 1 online resource (400 pages) :  |b graphs 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer function and state-space methods. The ideas of controllability, observability and minimality are discussed in comprehensible fashion. Part two introduces the calculus of variations, followed by analysis of continuous optimal control problems. Each topic is individually introduced and carefully explained with illustrative examples and exercises at the end of each chapter to help and test the reader's understanding. Solutions are provided at the end of the book. Investigates the many applications of control theory to varied and important present-day problemsDeals with the control of linear time-continuous systems, using both transfer function and state-space methodsIntroduces the calculus of variations, followed by analysis of continuous optimal control problems. 
505 0 |a Cover; CONTROL AND OPTIMAL CONTROLTHEORIES WITH APPLICATIONS; Copyright; Table of Contents; Preface; Part I -- Control; CHAPTER 1 System dynamics and differential equations; 1.1 INTRODUCTION; 1.2 SOME SYSTEM EQUATIONS; 1.3 SYSTEM CONTROL; 1.4 MATHEMATICAL MODELS AND DIFFERENTIAL EQUATIONS; 1.5 THE CLASSICAL AND MODERN CONTROL THEORY; PROBLEMS; CHAPTER 2 Transfer functions and block diagrams; 2.1 INTRODUCTION; 2.2 REVIEW OF LAPLACE TRANSFORMS; 2.3 APPLICATIONS TO DIFFERENTIAL EQUATIONS; 2.4 TRANSFER FUNCTIONS; 2.5 BLOCK DIAGRAMS; PROBLEMS; CHAPTER 3 State-space formulation; 3.1 INTRODUCTION. 
505 8 |a 3.2 STATE-SPACE FORMS3.3 USING THE TRANSFER FUNCTION TO DEFINE STATE VARIABLES; 3.4 DIRECT SOLUTION OF THE STATE-EQUATION; 3.5 SOLUTION OF THE STATE-EQUATION BY LAPLACE TRANSFORMS; 3.6 THE TRANSFORMATION FROM THE COMPANION TO THEDIAGONAL STATE FORM; 3.7 THE TRANSFER FUNCTION FROM THE STATE EQUATION; PROBLEMS; CHAPTER 4Transient andsteady state response analysis; 4.1 INTRODUCTION; 4.2 RESPONSE OF FIRST ORDER SYSTEMS; 4.3 RESPONSE OF SECOND ORDER SYSTEMS; 4.4 RESPONSE OF HIGHER ORDER SYSTEMS; 4.5 STEADY STATE ERROR; 4.6 FEEDBACK CONTROL; PROBLEMS; CHAPTER 5 Stability; 5.1 INTRODUCTION. 
505 8 |a 5.2 THE CONCEPT OF STABILITY5.3 ROUTH STABILITY CRITERION; 5.4 INTRODUCTION TO LIAPUNOV'S METHOD; 5.5 QUADRATIC FORMS; 5.6 DETERMINATION OF LIAPUNOV'S FUNCTIONS; 5.7 THE NYQUIST STABILITY CRITERION; 5.8 THE FREQUENCY RESPONSE; 5.9 AN INTRODUCTION TO CONFORMAL MAPPINGS; 5.10 APPLICATION OF CONFORMAL MAPPINGS TO THE FREQUENCYRESPONSE; PROBLEMS; CHAPTER 6Controllability and observability; 6.1 INTRODUCTION; 6.2 CONTROLLABILITY; 6.3 OBSERVABILITY; 6.4 DECOMPOSITION OF THE SYSTEM STATE; 6.5 A TRANSFORMATION INTO THE COMPANION FORM; PROBLEMS; CHAPTER 7Multivariable feedback and pole location. 
505 8 |a 7.1 INTRODUCTION7.2 STATE FEEDBACK OF A SISO SYSTEM; 7.3 MULTIVARIABLE SYSTEMS; 7.4 OBSERVERS; PROBLEMS; Part II -- Optimal Control; CHAPTER 8Introduction to optimal control; 8.1 CONTROL AND OPTIMAL CONTROL; 8.2 EXAMPLES; 8.3 FUNCTIONALS; 8.4 THE BASIC OPTIMAL CONTROL PROBLEM; PROBLEMS; CHAPTER 9Variational calculus; 9.1 THE BRACHISTOCHRONE PROBLEM; 9.2 EULER EQUATION; 9.3 FREE END CONDITIONS; 9.4 CONSTRAINTS; CHAPTER 10Optimal control withunbounded continuous controls; 10.1 INTRODUCTION; 10.2 THE HAMILTONIAN; 10.3 EXTENSION TO HIGHER ORDER SYSTEMS; 10.4 GENERAL PROBLEM; PROBLEMS. 
505 8 |a CHAPTER 11Bang-bang control11.1 INTRODUCTION; 11.2 PONTRYAGIN'S PRINCIPLE; 11.3 SWITCHING CURVES; 11.4 TRANSVERSALITY CONDITIONS; 11.5 EXTENSION TO THE BOLTZA PROBLEM; PROBLEMS; CHAPTER 12Applications of optimal control; 12.1 INTRODUCTION; 12.2 ECONOMIC GROWTH; 12.3 RESOURCE DEPLETION; 12.4 EXPLOITED POPULATIONS; 12.5 ADVERTISING POLICIES; 12.6 ROCKET TRAJECTORIES; 12.7 SERVO PROBLEM; PROBLEMS; CHAPTER 13Dynamic programming; 13.1 INTRODUCTION; 13.2 ROUTING PROBLEM; 13.3 D.P. NOTATION; 13.4 EXAMPLES; 13.5 BELLMAN'S EQUATION; 13.6 THE MAXIMUM PRINCIPLE; PROBLEMS; APPENDIX 1Partial fractions. 
546 |a English. 
650 0 |a Control theory. 
650 6 |a Th�eorie de la commande.  |0 (CaQQLa)201-0012168 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Control theory  |2 fast  |0 (OCoLC)fst00877085 
700 1 |a Graham, Alexander,  |d 1936- 
776 0 8 |i Print version:  |a Burghes, David N.  |t Control and optimal control theories with applications  |z 190427501X  |w (OCoLC)57336193 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781904275015  |z Texto completo