Cargando…

Networks and graphs : techniques and computational methods /

Dr Smith here presents essential mathematical and computational ideas of network optimisation for senior undergraduate and postgraduate students in mathematics, computer science and operational research. He shows how algorithms can be used for finding optimal paths and flows, identifying trees in ne...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smith, David K. (David Kendall), 1950-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester : Horwood Pub., [2003]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn869282256
003 OCoLC
005 20231117044953.0
006 m o d
007 cr cnu---unuuu
008 140128s2003 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OPELS  |d YDXCP  |d EBLCP  |d MHW  |d OCLCQ  |d MERUC  |d OCLCF  |d D6H  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ 
019 |a 871225447 
020 |a 9780857099570  |q (electronic bk.) 
020 |a 0857099574  |q (electronic bk.) 
020 |z 1898563918 
020 |z 9781898563914 
035 |a (OCoLC)869282256  |z (OCoLC)871225447 
050 4 |a QA166  |b .S595 2003eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.5  |2 22 
100 1 |a Smith, David K.  |q (David Kendall),  |d 1950- 
245 1 0 |a Networks and graphs :  |b techniques and computational methods /  |c David K. Smith. 
264 1 |a Chichester :  |b Horwood Pub.,  |c [2003] 
264 4 |c �2003 
300 |a 1 online resource (x, 193 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 187-188) and index. 
588 0 |a Print version record. 
520 |a Dr Smith here presents essential mathematical and computational ideas of network optimisation for senior undergraduate and postgraduate students in mathematics, computer science and operational research. He shows how algorithms can be used for finding optimal paths and flows, identifying trees in networks, and optimal matching. Later chapters discuss postman and salesperson tours, and demonstrate how many network problems are related to the ''minimal-cost feasible-flow'' problem. Techniques are presented both informally and with mathematical rigour and aspects of computation, especially of complexity, have been included. Numerous examples and diagrams illustrate the techniques and applications. The book also includes problem exercises with tutorial hints. Presents essential mathematical and computational ideas of network optimisation for senior undergraduate and postgraduate students in mathematics, computer science and operational researchDemonstrates how algorithms can be used for finding optimal paths and flows, identifying trees in networks and optimal matchingNumerous examples and diagrams illustrate the techniques and applications. 
505 0 |a Front Cover; ABOUT OUR AUTHOR; Networks and Graphs: Techniques and Computational Methods; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1 Graphs and networks; 1.2 Algorithms; 1.3 Basic definitions; 1.4 Complexity of algorithms; 1.5 Optimisation; 1.6 Heuristics; 1.7 Integer programmes; 1.8 Exercises; Chapter 2. Trees; 2.1 Introduction; 2.2 Minimal spanning trees; 2.3 Rooted trees; 2.4 Exercises; Chapter 3. Shortest Paths; 3.1 Introduction; 3.2 Path and other network problems; 3.3 Applications; 3.4 The shortest path algorithm; 3.5 Obvious and important extensions. 
505 8 |a 3.6 ExercisesChapter 4. Maximum Flows; 4.1 Introduction; 4.2 Ford-Fulkerson method; 4.3 Multiple sources and destinations; 4.4 Constrained flow through a vertex; 4.5 Exercises; Chapter 5. How to Store a Network; 5.1 Introduction; 5.2 Vertex-edge incidence matrix; 5.3 Vertex-vertex adjacency matrix; 5.4 Adjacency lists; 5.5 Forward and reverse star representations; 5.6 Summary; 5.7 Undirected edges; 5.8 Exercises; Chapter 6. More about Shortest Paths; 6.1 Introduction; 6.2 Ford's algorithm; 6.3 The two-tree variant of Dijkstra; 6.4 All shortest-paths; 6.5 The cascade methods. 
505 8 |a 6.6 Applications of all shortest paths6.7 Exercises; Chapter 7. Advanced Maximal Flow; 7.1 Introduction; 7.2 The E-K modification; 7.3 Prefiow-Push algorithms; 7.4 Summary and notes; 7.5 Exercises; Chapter 8. Minimum-Cost Feasible-Flow; 8.1 Introduction; 8.2 Modelling problems; 8.3 Maximal flow; 8.4 Dealing with personal data; 8.5 The transportation problem; 8.6 Assignment; 8.7 Knapsack problems; 8.8 Transshipment; 8.9 Exercises; Chapter 9. Matching and Assignment; 9.1 Introduction; 9.2 Applications; 9.3 Maximum cardinality; 9.4 General graphs and Edmonds' algorithm. 
505 8 |a 9.5 Matchings of optimal weight9.6 Exercises; Chapter 10. Postman Problems; 10.1 Introduction; 10.2 Applications and notes; 10.3 Postman problem: undirected networks; 10.4 Postman tours in mixed networks; 10.5 Problems related to the postman problem; 10.6 Exercises; Chapter 11. Travelling Salesperson; 11.1 Introduction; 11.2 Background and applications; 11.3 Heuristics for the travelling salesperson problem; 11.4 Finding an optimal solution to the TSP; 11.5 Exercises; Chapter 12. Tutorial hints; Books and References; Index. 
650 0 |a Graph theory  |x Data processing. 
650 0 |a Network analysis (Planning) 
650 0 |a Mathemtaical optimization. 
650 6 |a Analyse de r�eseau (Planification)  |0 (CaQQLa)201-0001237 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Graph theory  |x Data processing.  |2 fast  |0 (OCoLC)fst00946587 
650 7 |a Network analysis (Planning)  |2 fast  |0 (OCoLC)fst01036221 
776 0 8 |i Print version:  |a Smith, David K. (David Kendall), 1950-  |t Networks and graphs  |z 1898563918  |w (DLC) 2004381772  |w (OCoLC)56982585 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781898563914  |z Texto completo