Nature-inspired optimization algorithms /
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2014.
|
Colección: | Elsevier insights.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction to algorithms
- 2. Analysis of algorithms
- 3. Random walks and optimization
- 4. Simulated annealing
- 5. Genetic algorithms
- 6. Differential evolution
- 7. Particle swarm optimization
- 8. Firefly algorithms
- 9. Cuckoo search
- 10. Bat algorithms
- Flower pollination algorithms
- 12. A framework for self-tuning algorithms
- 13. How to deal with constraints
- 14. Multi-objective optimization
- 15. Other algorithms and hybrid algorithms
- Appendices.