Cargando…

Introduction to food engineering /

"Long recognized as the bestselling textbook for teaching food engineering to food science students, this 5th edition transitions with today's students from traditional textbook learning to integrated presentation of the key concepts of food engineering. Using carefully selected examples,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Singh, R. Paul (Autor), Heldman, Dennis R. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, 2014.
Edición:5th edition.
Colección:Food science and technology international series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Introduction
  • 1.1. Dimensions
  • 1.2. Engineering Units
  • 1.2.1. Base Units
  • 1.2.2. Derived Units
  • 1.2.3. Supplementary Units
  • 1.3. System
  • 1.4. State of a System
  • 1.4.1. Extensive Properties
  • 1.4.2. Intensive Properties
  • 1.5. Density
  • 1.6. Concentration
  • 1.7. Moisture Content
  • 1.8. Temperature
  • 1.9. Pressure
  • 1.10. Enthalpy
  • 1.11. Equation of State and Perfect Gas Law
  • 1.12. Phase Diagram of Water
  • 1.13. Conservation of Mass
  • 1.13.1. Conservation of Mass for an Open System
  • 1.13.2. Conservation of Mass for a Closed System
  • 1.14. Material Balances
  • 1.15. Thermodynamics
  • 1.16. Laws of Thermodynamics
  • 1.16.1. First Law of Thermodynamics
  • 1.16.2. Second Law of Thermodynamics
  • 1.17. Energy
  • 1.18. Energy Balance
  • 1.19. Energy Balance for a Closed System
  • 1.19.1. Heat
  • 1.19.2. Work
  • 1.20. Energy Balance for an Open System
  • 1.20.1. Energy Balance for Steady Flow Systems
  • 1.21.A Total Energy Balance
  • 1.22. Power
  • 1.23. Area
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 2 Fluid Flow in Food Processing
  • 2.1. Liquid Transport Systems
  • 2.1.1. Pipes for Processing Plants
  • 2.1.2. Types of Pumps
  • 2.2. Properties of Liquids
  • 2.2.1. Terminology Used in Material Response to Stress
  • 2.2.2. Density
  • 2.2.3. Viscosity
  • 2.3. Handling Systems for Newtonian Liquids
  • 2.3.1. The Continuity Equation
  • 2.3.2. Reynolds Number
  • 2.3.3. Entrance Region and Fully Developed Flow
  • 2.3.4. Velocity Profile in a Liquid Flowing Under Fully Developed Flow Conditions
  • 2.3.5. Forces Due to Friction
  • 2.4. Force Balance on a Fluid Element Flowing in a Pipe
  • Derivation of Bernoulli Equation
  • 2.5. Energy Equation for Steady Flow of Fluids
  • 2.5.1. Pressure Energy
  • 2.5.2. Kinetic Energy
  • 2.5.3. Potential Energy
  • 2.5.4. Frictional Energy Loss
  • 2.5.5. Power Requirements of a Pump
  • 2.6. Pump Selection and Performance Evaluation
  • 2.6.1. Centrifugal Pumps
  • 2.6.2. Head
  • 2.6.3. Pump Performance Characteristics
  • 2.6.4. Pump Characteristic Diagram
  • 2.6.5.Net Positive Suction Head
  • 2.6.6. Selecting a Pump for a Liquid Transport System
  • 2.6.7. Affinity Laws
  • 2.7. Flow Measurement
  • 2.7.1. The Pitot Tube
  • 2.7.2. The Orifice Meter
  • 2.7.3. The Venturi Meter
  • 2.7.4. Variable-Area Meters
  • 2.7.5. Other Measurement Methods
  • 2.8. Measurement of Viscosity
  • 2.8.1. Capillary Tube Viscometer
  • 2.8.2. Rotational Viscometer
  • 2.8.3. Influence of Temperature on Viscosity
  • 2.9. Flow Characteristics of Non-Newtonian Fluids
  • 2.9.1. Properties of Non-Newtonian Fluids
  • 2.9.2. Velocity Profile of a Power Law Fluid
  • 2.9.3. Volumetric Flow Rate of a Power Law Fluid
  • 2.9.4. Average Velocity in a Power Law Fluid
  • 2.9.5. Friction Factor and Generalized Reynolds Number for Power Law Fluids
  • 2.9.6.Computation of Pumping Requirement of Non-Newtonian Liquids
  • 2.10. Transport of Solid Foods
  • 2.10.1. Properties of Granular Materials and Powders
  • 2.10.2. Flow of Granular Foods
  • 2.11. Process Controls in Food Processing
  • 2.11.1. Processing Variables and Performance Indicators
  • 2.11.2. Input and Output Signals to Control Processes
  • 2.11.3. Design of a Control System
  • 2.12. Sensors
  • 2.12.1. Temperature
  • 2.12.2. Liquid Level in a Tank
  • 2.12.3. Pressure Sensors
  • 2.12.4. Flow Sensors
  • 2.12.5. Glossary of Terms Important in Data Acquisition
  • 2.13. Dynamic Response Characteristics of Sensors
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 3 Resource Sustainability
  • 3.1. Generation of Steam
  • 3.1.1. Steam Generation Systems
  • 3.1.2. Thermodynamics of Phase Change
  • 3.1.3. Steam Tables
  • 3.1.4. Steam Utilization
  • 3.2. Fuel Utilization
  • 3.2.1. Systems
  • 3.2.2. Mass and Energy Balance Analysis
  • 3.2.3. Burner Efficiencies
  • 3.3. Electric Power Utilization
  • 3.3.1. Electrical Terms and Units
  • 3.3.2. Ohm's Law
  • 3.3.3. Electric Circuits
  • 3.3.4. Electric Motors
  • 3.3.5. Electrical Controls
  • 3.3.6. Electric Lighting
  • 3.4. Energy, Water and Environment
  • 3.4.1. Life Cycle Assessment
  • 3.4.2. Food System Applications
  • 3.4.3. Sustainability Indicators
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 4 Heat Transfer in Food Processing
  • 4.1. Systems for Heating and Cooling Food Products
  • 4.1.1. Plate Heat Exchanger
  • 4.1.2. Tubular Heat Exchanger
  • 4.1.3. Scraped-Surface Heat Exchanger
  • 4.1.4. Steam-Infusion Heat Exchanger
  • 4.1.5. Epilogue
  • 4.2. Thermal Properties of Foods
  • 4.2.1. Specific Heat
  • 4.2.2. Thermal Conductivity
  • 4.2.3. Thermal Diffusivity
  • 4.3. Modes of Heat Transfer
  • 4.3.1. Conductive Heat Transfer
  • 4.3.2. Convective Heat Transfer
  • 4.3.3. Radiation Heat Transfer
  • 4.4. Steady-State Heat Transfer
  • 4.4.1. Conductive Heat Transfer in a Rectangular Slab
  • 4.4.2. Conductive Heat Transfer through a Tubular Pipe
  • 4.4.3. Heat Conduction in Multilayered Systems
  • 4.4.4. Estimation of Convective Heat-Transfer Coefficient
  • 4.4.5. Estimation of Overall Heat-Transfer Coefficient
  • 4.4.6. Fouling of Heat Transfer Surfaces
  • 4.4.7. Design of a Tubular Heat Exchanger
  • 4.4.8. The Effectiveness-NTIT Method for Designing Heat Exchangers
  • 4.4.9. Design of a Plate Heat Exchanger
  • 4.4.10. Importance of Surface Characteristics in Radiative Heat Transfer
  • 4.4.11. Radiative Heat Transfer between Two Objects
  • 4.5. Unsteady-State Heat Transfer
  • 4.5.1. Importance of External versus Internal Resistance to Heat Transfer
  • 4.5.2. Negligible Internal Resistance to Heat Transfer (NBi <0.1)
  • A Lumped System Analysis
  • 4.5.3. Finite Internal and Surface Resistance to Heat Transfer (0.1<NB<40)
  • 4.5.4. Negligible Surface Resistance to Heat Transfer (NBi>40)
  • 4.5.5. Finite Objects
  • 4.5.6. Procedures to Use Temperature
  • Time Charts
  • 4.5.7. Use of fh and j Factors in Predicting Temperature in Transient Heat Transfer
  • 4.6. Electrical Conductivity of Foods
  • 4.7. Ohmic Heating
  • 4.8. Microwave Heating
  • 4.8.1. Mechanisms of Microwave Heating
  • 4.8.2. Dielectric Properties
  • 4.8.3. Conversion of Microwave Energy into Heat
  • 4.8.4. Penetration Depth of Microwaves
  • 4.8.5. Microwave Oven
  • 4.8.6. Microwave Heating of Foods
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 5 Preservation Processes
  • 5.1. Processing Systems
  • 5.1.1. Pasteurization and Blanching Systems
  • 5.1.2.Commercial Sterilization Systems
  • 5.1.3. Ultra-High Pressure Systems
  • 5.1.4. Pulsed Electric Field Systems
  • 5.1.5. Alternative Preservation Systems
  • 5.2. Microbial Survivor Curves
  • 5.3. Influence of External Agents
  • 5.4. Thermal Death Time F
  • 5.5. Spoilage Probability
  • 5.6. General Method for Process Calculation
  • 5.6.1. Applications to Pasteurization
  • 5.6.2.Commercial Sterilization
  • 5.6.3. Aseptic Processing and Packaging
  • 5.6.4.Combined Processes
  • 5.7. Mathematical Methods
  • 5.7.1. Pouch Processing
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 6 Refrigeration
  • 6.1. Selection of a Refrigerant
  • 6.2.Components of a Refrigeration System
  • 6.2.1. Evaporator
  • 6.2.2.Compressor
  • 6.2.3. Condenser
  • 6.2.4. Expansion Valve
  • 6.3. Pressure-Enthalpy Charts
  • 6.3.1. Pressure-Enthalpy Tables
  • 6.3.2. Use of Computer-Aided Procedures to Determine Thermodynamic Properties of Refrigerants
  • 6.4. Mathematical Expressions Useful in Analysis of Vapor-Compression Refrigeration
  • 6.4.1. Cooling Load
  • 6.4.2.Compressor
  • 6.4.3. Condenser
  • 6.4.4. Evaporator
  • 6.4.5. Coefficient of Performance
  • 6.4.6. Refrigerant Flow Rate
  • 6.5. Use of Multistage Systems
  • 6.5.1. Flash Gas Removal System
  • Problems
  • List of Symbols
  • Bibliography
  • ch.
  • 7 Food Freezing
  • 7.1. Freezing Systems
  • 7.1.1. Indirect Contact Systems
  • 7.1.2. Direct-Contact Systems
  • 7.2. Frozen-Food Properties
  • 7.2.1. Density
  • 7.2.2. Thermal Conductivity
  • 7.2.3. Enthalpy
  • 7.2.4. Apparent Specific Heat
  • 7.2.5. Apparent Thermal Diffusivity
  • 7.3. Freezing Time
  • 7.3.1. Plank's Equation
  • 7.3.2. Other Freezing-Time Prediction Methods
  • 7.3.3. Pham's Method to Predict Freezing Time
  • 7.3.4. Prediction of Freezing Time of Finite-Shaped Objects
  • 7.3.5. Experimental Measurement of Freezing Time
  • 7.3.6. Factors Influencing Freezing Time
  • 7.3.7. Freezing Rate
  • 7.3.8. Thawing Time
  • 7.4. Frozen-Food Storage
  • 7.4.1. Quality Changes in Foods during Frozen Storage
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 8 Evaporation
  • 8.1. Boiling-Point Elevation
  • 8.2. Types of Evaporators
  • 8.2.1. Batch-Type Pan Evaporator
  • 8.2.2. Natural Circulation Evaporators
  • 8.2.3. Rising-Film Evaporator
  • 8.2.4. Falling-Film Evaporator
  • 8.2.5. Rising/Falling-Film Evaporator
  • 8.2.6. Forced-Circulation Evaporator
  • 8.2.7. Agitated Thin-Film Evaporator
  • 8.3. Design of a Single-Effect Evaporator
  • 8.4. Design of a Multiple-Effect Evaporator
  • 8.5. Vapor Recompression Systems
  • 8.5.1. Thermal Recompression
  • 8.5.2. Mechanical Vapor Recompression
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 9 Psychrometrics
  • 9.1. Properties of Dry Air
  • 9.1.1.Composition of Air
  • 9.1.2. Specific Volume of Dry Air
  • 9.1.3. Specific Heat of Dry Air
  • 9.1.4. Enthalpy of Dry Air
  • 9.1.5. Dry Bulb Temperature
  • 9.2. Properties of Water Vapor
  • 9.2.1. Specific Volume of Water Vapor
  • 9.2.2. Specific Heat of Water Vapor
  • 9.2.3. Enthalpy of Water Vapor
  • 9.3. Properties of Air
  • Vapor Mixtures
  • 9.3.1. Gibbs-Dalton Law
  • 9.3.2. Dew-Point Temperature
  • 9.3.3. Humidity Ratio (or Moisture Content)
  • 9.3.4. Relative Humidity
  • 9.3.5. Humid Heat of an Air-Water Vapor Mixture
  • 9.3.6. Specific Volume
  • 9.3.7. Adiabatic Saturation of Air
  • 9.3.8. Wet Bulb Temperature
  • 9.4. The Psychrometric Chart
  • 9.4.1. Construction of the Chart
  • 9.4.2. Use of Psychrometric Chart to Evaluate Complex Air-Conditioning Processes
  • Problems
  • List of Symbols
  • Bibliography
  • ch. 10 Mass Transfer
  • 10.1. The Diffusion Process
  • 10.1.1. Steady-State Diffusion of Gases (and Liquids) through Solids
  • 10.1.2. Convective Mass Transfer
  • 10.1.3. Laminar Flow Over a Flat Plate
  • 10.1.4. Turbulent Flow Past a Flat Plate
  • 10.1.5. Laminar Flow in a Pipe.