Optical fiber telecommunications. Vol. B, Systems and networks
Optical Fiber Telecommunications VI (A&B) is the sixth in a series that has chronicled the progress in the R&D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including dev...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Academic Press Inc.,
2013.
|
Edición: | 6th ed. |
Colección: | Optics and photonics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Fiber Nonlinearity and Capacity: Single-Mode and Multimode Fibers / Roland Ryf
- 1.1.Introduction
- 1.2.Network traffic and optical systems capacity
- 1.3.Information theory
- 1.3.1.Basic concepts
- 1.3.2.Link to optical communication
- 1.4.Single-mode fibers: single polarization
- 1.4.1.Stochastic nonlinear Schrodinger equation
- 1.4.2.Nonlinear capacity of standard single-mode fiber
- 1.4.3.Advanced single-mode fibers
- 1.4.4.Analytic formula of fiber capacity
- 1.5.Single-mode fibers: polarization-division multiplexing
- 1.5.1.Nonlinear propagation: stochastic Manakov equations
- 1.5.2.Capacity of PDM systems
- 1.6.Multicore and multimode fibers
- 1.6.1.Types of multicore and multimode fibers
- 1.6.2.Capacity scaling with the number of modes
- 1.6.3.Generalized Manakov equations for multimode fibers
- 1.6.4.Description of a few-mode fiber
- 1.6.5.Inter-modal cross-phase modulation
- 1.6.6.Inter-modal four-wave mixing
- 1.7.Conclusion
- References
- ch. 2 Commercial 100-Gbit/s Coherent Transmission Systems / Glenn A. Wellbrock
- 2.1.Introduction
- 2.2.Optical channel designs
- 2.3.100G channel-from wish to reality
- 2.4.Introduction of 100g channels to service provider networks
- 2.5.Impact of commercial 100g system to transport network
- 2.6.Outlook beyond commercial 100g systems
- 2.7.Summary
- References
- ch. 3 Advances in Tb/s Superchannels / Xiang Liu
- 3.1.Introduction
- 3.2.Superchannel principle
- 3.3.Modulation
- 3.4.Multiplexing
- 3.4.1.Overview of multiplexing schemes
- 3.4.2.Seamless multiplexing
- 3.4.3.Multiplexing with guard band
- 3.5.Detection
- 3.6.Superchannel transmission
- 3.6.1.Transmission based on single-carrier modulation and O-OFDM multiplexing
- 3.6.2.Transmission based on OFDM modulation and O-OFDM multiplexing
- 3.6.3.Transmission based on Nyquist-WDM
- 3.6.4.Optimization of the spectral-efficiency-distance-product
- 3.7.Networking implications
- 3.8.Conclusion
- Glossary
- References
- ch. 4 Optical Satellite Communications / David Caplan
- 4.1.Introduction
- 4.1.1.Reduced diffraction
- 4.1.2.Available bandwidth
- 4.1.3.Commercially available technologies
- 4.1.4.Lasercom challenges
- 4.2.Lasercom link budgets
- 4.3.Laser beam propagation through the atmosphere
- 4.3.1.Atmospheric attenuation
- 4.3.2.Atmospheric radiance
- 4.3.3.Atmospheric turbulence
- 4.3.4.Turbulence mitigation approaches
- 4.4.Optical transceivers for space applications
- 4.4.1.Overview of FSO modulation formats and sensitivities
- 4.4.2.Transmitter technologies
- 4.4.3.Receiver technologies and performance
- 4.5.Space terminal
- 4.5.1.Space environment
- 4.5.2.Pointing, acquisition, and tracking
- 4.5.3.Flight optomechanics assembly
- 4.6.Ground terminal
- 4.6.1.Ground terminal-telescope and optomechanics assembly
- 4.6.2.Ground terminal-uplink transmitter
- 4.6.3.Ground terminal-acquisition, pointing, and tracking assembly
- 4.7.List of acronyms
- References
- ch. 5 Digital Signal Processing (DSP) and Its Application in Optical Communication Systems / David S. Millar
- 5.1.Introduction
- 5.1.1.Maximizing capacity in optical transport networks
- 5.2.Digital signal processing and its functional blocks
- 5.2.1.Optical coherent receiver and digital signal processing functionality
- 5.3.Application of DBP-based DSP to optical fiber Transmission in the nonlinear regime
- 5.3.1.Nonlinearity compensation in optical communications
- 5.3.2.Single-channel optical transmission performance
- 5.3.3.Single-channel digital backpropagation
- 5.3.4.WDM transmission
- 5.3.5.Digital backpropagation of the central channel
- 5.3.6.Multi-channel digital backpropagation
- 5.4.Summary and future questions
- References
- ch. 6 Advanced Coding for Optical Communications / Ivan B. Djordjevic
- 6.1.Introduction
- 6.2.Linear block codes
- 6.2.1.Generator matrix
- 6.2.2.Parity-check matrix
- 6.2.3.Coding gain
- 6.3.Codes on graphs
- 6.3.1.Turbo codes
- 6.3.2.Turbo-product codes (TPCs)
- 6.3.3.Low-density parity-check (LDPC) codes
- 6.3.4.Quasi-cyclic (QC) binary LDPC code design
- 6.3.5.Decoding of binary LDPC codes and BER performance evaluation
- 6.3.6.Nonbinary LDPC codes
- 6.3.7.FPGA implementation of decoders for large-girth QC-LDPC codes
- 6.4.Coded modulation
- 6.4.1.Multilevel coding and block-interleaved coded modulation
- 6.4.2.Polarization-multiplexed coded-OFDM
- 6.4.3.Nonbinary LDPC-coded modulation
- 6.4.4.Multidimensional coded modulation
- 6.5.Adaptive nonbinary LDPC-coded modulation
- 6.6.LDPC-coded turbo equalization
- 6.6.1.MAP detection
- 6.6.2.Multilevel turbo equalization
- 6.6.3.Performance of LDPC-coded turbo equalizer
- 6.6.4.Multilevel turbo equalizer robust to I/Q-imbalance and polarization offset
- 6.6.5.Multilevel turbo equalization with digital backpropagation
- 6.7.Information capacity of fiber-optics communication systems
- 6.7.1.Channel capacity of channels with memory
- 6.7.2.Calculation of information capacity of multilevel modulation schemes by forward recursion of BCJR algorithm
- 6.7.3.Information capacity of systems with coherent detection
- 6.8.Concluding remarks
- References
- ch. 7 Extremely Higher-Order Modulation Formats / Keisuke Kasai
- 7.1.Introduction
- 7.2.Spectral efficiency of QAM signal and shannon limit
- 7.3.Fundamental configuration and key components of QAM coherent optical transmission
- 7.3.1.Coherent light source
- 7.3.2.Optical IQ modulator
- 7.3.3.Coherent optical receiver and optical PLL
- 7.3.4.Digital demodulator and equalizer
- 7.4.Higher-order QAM transmission experiments
- 7.4.1.1024 QAM (60Gbit/s) single-carrier transmission
- 7.4.2.256 QAM-OFDM coherent transmission
- 7.4.3.Ultrahigh-speed OTDM-RZ/QAM transmission
- 7.5.Conclusion
- References
- ch. 8 Multicarrier Optical Transmission / William Shieh
- 8.1.Historical perspective of optical multicarrier transmission
- 8.1.1.Variations of optical multicarrier transmission methods
- 8.1.2.Research trends in optical multicarrier transmission
- 8.2.OFDM basics
- 8.2.1.Mathematical formulation of an OFDM signal
- 8.2.2.Discrete Fourier transform implementation of OFDM
- 8.2.3.Cyclic prefix for OFDM
- 8.2.4.Spectral efficiency for optical OFDM
- 8.3.Optical multicarrier systems based on electronic FFT
- 8.3.1.Coherent optical OFDM
- 8.3.2.Direct-detection optical OFDM
- 8.4.Optical multicarrier systems based on optical multiplexing
- 8.4.1.All-optical OFDM
- 8.4.2.Optical superchannel
- 8.4.3.Optical frequency division multiplexing
- 8.5.Nonlinearity in optical multicarrier transmission
- 8.5.1.High spectral-efficiency long-haul transmission
- 8.5.2.Optimal symbol rate in multicarrier systems
- 8.5.3.The information spectral limit in multicarrier systems
- 8.5.4.Nonlinearity mitigation for multicarrier systems
- 8.6.Applications of optical multicarrier transmissions
- 8.6.1.Long-reach and high-capacity systems
- 8.6.2.Optical access networks
- 8.6.3.Indoor and free-space multicarrier optical systems
- 8.7.Future research directions for multicarrier transmission
- References
- ch. 9 Optical OFDM and Nyquist Multiplexing / Wolfgang Freude
- 9.1.Introduction
- 9.2.Orthogonal shaping of temporal or spectral functions for efficient multiplexing
- 9.2.1.Definitions of orthogonality
- 9.2.2.Transmitter
- 9.2.3.Channel
- 9.2.4.Receiver
- 9.2.5.Avoiding inter-channel and inter-symbol interference
- 9.2.6.Pulse-shaping in the digital, electrical, and optical domain-a comparison
- 9.3.Optical Fourier transform based multiplexing
- 9.3.1.Electronic Fourier transform processing
- 9.3.2.The optical Fourier transform receiver
- 9.3.3.The optical Fourier transform transmitter
- 9.3.4.Optical Fourier transform processors
- 9.4.Encoding and decoding of OFDM signals
- 9.4.1.OFDM transmitter
- 9.4.2.OFDM receivers
- 9.4.3.OFDM transmission-an example of an all-optical implementation
- 9.5.Conclusion
- 9.6.Mathematical definitions and relations
- References
- ch.
- 10 Spatial Multiplexing Using Multiple-Input Multiple-Output Signal Processing / Sebastian Randel
- 10.1.Optical network capacity scaling through spatial multiplexing
- 10.1.1.The capacity crunch
- 10.1.2.Spatial multiplexing
- 10.1.3.Crosstalk management in SDM systems
- 10.2.Coherent MIMO-SDM with selective mode excitation
- 10.2.1.Signal orthogonality
- 10.2.2.MIMO system capacities and outage
- 10.3.MIMO DSP
- 10.3.1.General receiver DSP functional blocks
- 10.3.2.Channel estimation
- 10.3.3.Adaptive MIMO equalization
- 10.3.4.MIMO equalizer complexity
- 10.4.Mode multiplexing components
- 10.4.1.Mode multiplexer characteristics
- 10.4.2.Mode multiplexer design
- 10.4.3.Mode couplers for few-mode fibers
- 10.4.4.Mode couplers for multi-core fibers
- 10.5.Optical amplifiers for coupled-mode transmission
- 10.5.1.Optical amplifiers for few-mode fibers
- 10.5.2.Optical amplifier for multi-core fibers
- 10.6.Systems experiments
- 10.6.1.Single-span MIMO-SDM transmission over few-mode fiber
- 10.6.2.Multi-span MIMO-SDM transmission over few-mode fiber
- 10.6.3.MIMO-SDM in coupled multi-core fiber
- 10.7.Conclusion
- References
- ch. 11 Mode Coupling and its Impact on Spatially Multiplexed Systems / Joseph M. Kahn
- 11.1.Introduction
- 11.2.Modes and mode coupling in optical fibers
- 11.2.1.Modes in optical fibers
- 11.2.2.Mode coupling and its origins
- 11.2.3.Mode coupling models
- 11.3.Modal dispersion
- 11.3.1.Coupled modal dispersion
- 11.3.2.Group delay statistics in strong-coupling regime
- 11.3.3.Statistics of group delay spread
- 11.4.Mode-dependent loss and gain
- 11.4.1.Statistics of strongly coupled mode-dependent gains and losses
- 11.4.2.Model for mode-dependent loss and gain
- 11.4.3.Properties of the product of random matrices
- 11.4.4.Numerical simulations of mode-dependent loss and gain
- Note continued: 11.4.5.Spatial whiteness of received noise
- 11.4.6.Frequency-dependent mode-dependent loss and gain
- 11.5.Direct-detection mode-division multiplexing
- 11.6.Coherent mode-division multiplexing
- 11.6.1.Average channel capacity of narrowband systems
- 11.6.2.Wideband systems and frequency diversity
- 11.6.3.Signal processing for mode-division-multiplexing
- 11.7.Conclusion
- References
- ch. 12 Multimode Communications Using Orbital Angular Momentum / Alan E. Willner
- 12.1.Perspective on orbital angular momentum (OAM) multiplexing in communication systems
- 12.2.Fundamentals of OAM
- 12.3.Techniques for OAM generation, multiplexing/demultiplexing, and detection
- 12.3.1.OAM generation
- 12.3.2.OAM multiplexing/demultiplexing
- 12.3.3.OAM detection
- 12.4.Free-space communication links using OAM multiplexing
- 12.4.1.OAM+WDM link
- 12.4.2.OAM+PDM link
- 12.4.3.Scalability of OAM+PDM in spatial domain
- 12.5.Fiber-based transmission links
- 12.5.1.Fiber design
- 12.5.2.Coupling and controlling OAM in fibers
- 12.5.3.Long-length propagation of OAM in fiber
- 12.5.4.Fiber-based data transmission using OAM
- 12.6.Optical signal processing using OAM
- 12.6.1.Data exchange
- 12.6.2.Add/drop
- 12.6.3.Multicasting
- 12.6.4.Monitoring and compensation
- 12.7.Future challenges of OAM communications
- References
- ch. 13 Transmission Systems Using Multicore Fibers / Shoichiro Matsuo
- 13.1.Expectations of multicore fibers
- 13.2.MCF design
- 13.2.1.Types of MCFs
- 13.2.2.Inter-core crosstalk in homogeneous uncoupled MCFs
- 13.2.3.Inter-core crosstalk in heterogeneous uncoupled MCFs
- 13.3.Methods of coupling to MCFs
- 13.3.1.Lens coupling systems
- 13.3.2.Fiber-based systems and waveguide-based systems
- 13.3.3.Splicing techniques
- 13.4.Transmission experiments with uncoupled cores
- 13.4.1.Early demonstrations
- 13.4.2.Scalability of core number
- 13.4.3.1-R repeated demonstrations
- 13.5.Laguerre-Gaussian mode division multiplexing transmission in MCFs
- References
- ch. 14 Elastic Optical Networking / Masahiko Jinno
- 14.1.Introduction
- 14.1.1.The only constant in the future network is change
- 14.1.2.Why "business as usual" is not an option for DWDM
- 14.2.Enabling technologies
- 14.2.1.Flexible spectrum ROADM
- 14.2.2.Bitrate variable transceiver
- 14.2.3.The extended role of network control systems
- 14.2.4.EON trials and other proof points
- 14.3.The EON vision and some new concepts
- 14.3.1.Flexible choice of EOP parameters
- 14.3.2.Sliceable transceiver
- 14.3.3.Flexible client interconnect
- 14.3.4.Spectrum allocation and reallocation
- 14.3.5.Managing a connection per demand instead of managing wavelength
- 14.3.6.Adaptive restoration
- 14.4.A comparison of EON and fixed DWDM
- 14.4.1.A point-to-point comparison
- 14.4.2.A network level comparison
- 14.4.3.A comparison that includes the client network
- 14.5.Standards progress
- 14.5.1.DWDM network architecture
- 14.5.2.OTN mapping and multiplexing
- 14.5.3.Control plane: ASON, WSON, and GMPLS
- 14.5.4.Standardizing on flexible spectrum
- 14.6.Summary
- References
- ch. 15 ROADM-Node Architectures for Reconfigurable Photonic Networks / Paparao Palacharla
- Summary
- 15.1.Introduction
- 15.2.The ROADM node
- 15.2.1.Features-from necessities to luxuries
- 15.2.2.Evolution of the switching core
- 15.2.3.The mux/demux section of the ROADM node
- 15.2.4.Client-side switching
- 15.2.5.Flexible transponders
- 15.3.Network applications: Studies and demonstrations
- 15.3.1.CN-ROADMs and CNC-ROADMs in dynamic optical networks
- 15.3.2.Predeployment of regenerators for faster provisioning and lower MTTR
- 15.3.3.Wavelength grooming and traffic re-routing
- 15.3.4.Automated wavelength restoration
- 15.3.5.Bandwidth on demand
- 15.4.Two compatible visions of the future
- 15.4.1.Vision 1: highly dynamic network
- 15.4.2.Vision 2: space-division multiplexed systems
- 15.5.Conclusions
- References
- ch. 16 Convergence of IP and Optical Networking / Cesar Santivanez
- 16.1.Introduction
- 16.2.Motivation
- 16.2.1.Network services
- 16.2.2.Network architectures
- 16.2.3.Network technologies
- 16.3.Background
- 16.3.1.Network stack
- 16.3.2.Management, control, and data planes
- 16.3.3.Control plane functions
- 16.3.4.Traffic management
- 16.3.5.Recovery
- 16.3.6.Multi-domain
- 16.4.Standards
- 16.5.Next-generation control and management
- 16.5.1.Drivers
- 16.5.2.Novel framework
- 16.5.3.Research extensions: highly heterogeneous networks
- References
- ch. 17 Energy-Efficient Telecommunications / Rodney S. Tucker
- 17.1.Introduction
- 17.2.Energy use in commercial optical communication systems
- 17.2.1.Long reach and core transmission systems
- 17.2.2.Access networks
- 17.2.3.Switching and routing equipments
- 17.2.4.Overhead energy and common equipment constraints
- 17.3.Energy in optical communication systems
- 17.4.Transmission and switching energy models
- 17.4.1.Transmission system energy model
- 17.4.2.Lower bound on energy consumption of optically amplified transport
- 17.4.3.Energy consumption in optical transmitters and receivers
- 17.4.4.Transmission system lower bounds
- 17.5.Network Energy Models
- 17.5.1.Network energy model
- 17.5.2.Switching devices and fabrics
- 17.5.3.Switching sub-system energy
- 17.5.4.End-to-end network energy models
- 17.5.5.Comparison of energy projections with network-based data
- 17.6.Conclusion
- References
- ch. 18 Advancements in Metro Regional and Core Transport Network Architectures for the Next-Generation Internet / Loukas Paraschis
- 18.1.Introduction
- 18.2.Network architecture evolution
- 18.3.Transport technology innovations
- 18.3.1.IP/MPLS transport
- 18.3.2.100 Gb/s interconnections and coherent DWDM transmission
- 18.3.3.Optical transport networking (ITU G.709 standard)
- 18.3.4.Fully flexible DWDM add-drop multiplexing and switching
- 18.3.5.WSON and GMPLS control-plane advancements
- 18.4.The network value of photonics technology innovation
- 18.5.The network value of optical transport innovation
- 18.6.Outlook
- 18.7.Summary
- References
- ch. 19 Novel Architectures for Streaming/Routing in Optical Networks / Vincent W.S. Chan
- 19.1.Introduction and historical perspectives on connection and connectionless oriented optical transports
- 19.2.Essence of the major types of optical transports: optical packet switching (OPS), optical burst switching (OBS), and optical flow switching (OFS)
- 19.2.1.A brief history of OFS
- 19.3.Network architecture description and layering
- 19.3.1.The need for new architecture constructs for optical networks
- 19.3.2.OFS architectural principles
- 19.4.Definition of network "capacity" and evaluation of achievable network capacity regions of different types of optical transports
- 19.5.Physical topology of fiber plant and optical switching functions at nodes and the effects of transmission impairments and session dynamics on network architecture
- 19.6.Network management and control functions and scalable architectures
- 19.7.Media access control (MAC) protocol and implications on routing protocol efficiency and scalability
- 19.8.Transport layer protocol for new optical transports
- 19.9.Cost, power consumption throughput, and delay performance
- 19.10.Summary
- References
- ch. 20 Recent Advances in High-Frequency (> 10GHz) Microwave Photonic Links / Edward I. Ackerman
- 20.1.Introduction
- 20.2.Photonic links for receive-only applications
- 20.2.1.Effect of modulator bias point
- 20.2.2.Effect of balanced photodetection
- 20.3.Photonic links for transmit and receive applications
- 20.3.1.Broad bandwidth TIPRx
- 20.3.2.High frequency TIPRx
- 20.4.Summary
- References
- ch.
- 21 Advances in 1-100GHz Microwave Photonics: All-Band Optical Wireless Access Networks Using Radio Over Fiber Technologies / Shu-Hao Fan
- 21.1.Introduction
- 21.2.Optical RF wave generation
- 21.2.1.Overview of optical RF signal generation
- 21.2.2.Types of optical RF waves
- 21.2.3.ODSB millimeter wave
- 21.2.4.OSSB+C millimeter wave
- 21.2.5.OCS millimeter wave
- 21.2.6.Conversion efficiency
- 21.3.Converged ROF transmission system
- 21.3.1.Generation and transmission of multiple RF bands
- 21.3.2.Baseband, microwave, and millimeter wave
- 21.3.3.Millimeter wave with wireless services in low RF regions
- 21.3.4.60-GHz sub-bands generation
- 21.4.Conclusions
- References
- ch. 22 PONs: State of the Art and Standardized / Frank Effenberger
- 22.1.Introduction to PON
- 22.2.TDM PONs: Basic design and issues
- 22.2.1.Brief review of TDM PON standards
- 22.2.2.Generation 4: 10Gbit/s PONs
- 22.2.3.40G serial
- 22.3.Video overlay
- 22.4.WDM PONs: common elements
- 22.4.1.Injection locked
- 22.4.2.Wavelength reuse
- 22.4.3.Self-seeded
- 22.4.4.Tunable
- 22.4.5.Coherent
- 22.5.FDM-PONs: Motivation
- 22.5.1.Pure FDM
- 22.5.2.Incoherent OFDM
- 22.5.3.Optical OFDM
- 22.6.Hybrid TWDM-PON
- 22.7.Summary and outlook
- References
- ch. 23 Wavelength-Division-Multiplexed Passive Optical Networks (WDM PONs) / Y. Takushima
- 23.1.Introduction
- 23.2.Light sources for WDM PON
- 23.2.1.Distributed feedback (DFB) laser
- 23.2.2.Tunable laser
- 23.2.3.Spectrum-sliced incoherent light source
- 23.2.4.Reflective light sources
- 23.2.5.Re-modulation scheme for upstream transmission
- 23.3.WDM PON architectures
- 23.3.1.WDM PON in wavelength-routing architecture
- 23.3.2.WDM PON in broadcast-and-select architecture
- 23.3.3.WDM PON in ring/bus architectures
- 23.4.Long-reach WDM PONs
- 23.4.1.Fundamental limitations on the reach of WDM PON
- 23.4.2.Long-reach WDM PON using remote optical amplifiers
- 23.4.3.Long-reach WDM PON using coherent detection technique
- 23.5.Next-generation high-speed WDM PON
- 23.5.1.Limitation on the operating speed of colorless light sources
- Note continued: 23.5.2.Modulation bandwidth of RSOA and its equalization technique
- 23.5.3.Utilization of advanced modulation formats
- 23.5.4.Ultrahigh-speed WDM PON
- 23.6.Fault monitoring, localization and protection techniques
- 23.6.1.Fault localization techniques for WDM PON
- 23.6.2.Survivable WDM PONs
- 23.7.Summary
- Appendix: Acronyms
- References
- ch. 24 FTTX Worldwide Deployment / Zisen Zhao
- 24.1.Introduction
- 24.2.Background of fiber architectures
- 24.2.1.Passive optical networks (PONs)
- 24.2.2.Point to point
- 24.3.Technology variants
- 24.3.1.B-PON
- 24.3.2.GE-PON
- 22.3.3.G-PON
- 24.3.4.Next-generation PON technologies
- 24.3.5.Coexistence and wavelength plan
- 24.3.6.Extended reach systems
- 24.3.7.CO consolidation
- 24.4.Status and FTTX deployments around the world
- 24.4.1.FTTX in Asia
- 24.4.2.FTTX in Europe and Africa
- 24.4.3.FTTX in the Americas
- 24.5.What's Next?
- 24.6.Summary
- References
- ch. 25 Modern Undersea Transmission Technology / Georg Mohs
- 25.1.Introduction
- 25.1.1.Reach, latency and capacity
- 25.1.2.The capacity challenge
- 25.2.Coherent transmission technology in undersea systems
- 25.2.1.Introduction to coherent detection
- 25.2.2.Linear impairment compensation with coherent detection
- 25.2.3.Nonlinearity accumulation in dispersion uncompensated transmission
- 25.3.Increasing spectral efficiency by bandwidth constraint
- 25.3.1.Inter-symbol interference compensation by linear filters
- 25.3.2.Multi-symbol detection
- 25.4.Nyquist carrier spacing
- 25.4.1.Spectral shaping for single channel modulation formats
- 25.4.2.Orthogonal frequency division multiplexing (OFDM)
- 25.4.3.Super-channels
- 25.5.Increasing spectral efficiency by increasing the constellation size
- 25.5.1.Higher order modulation formats
- 25.5.2.Receiver sensitivity
- 25.5.3.Coded modulation
- 25.6.Future trends
- 25.6.1.Nonlinearitycompensation
- 25.6.2.Multi-core and multi-mode fiber
- 25.7.Summary
- List of acronyms
- References.