Cargando…

Process intensification : engineering for efficiency, sustainability and flexibility /

Detalles Bibliográficos
Clasificación:TP155.75
Autor principal: Reay, D. A. (David Anthony) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Butterworth-Heinemann, 2013.
Edición:Second edition.
Colección:Isotopes in Organic Chemistry
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 A Brief History of Process Intensification
  • 1.1. Introduction
  • 1.2. Rotating boilers
  • 1.2.1. The rotating boiler/turbine concept
  • 1.2.2. NASA work on rotating boilers
  • 1.3. The rotating heat pipe
  • 1.3.1. Rotating air conditioning unit
  • 1.4. The chemical process industry
  • the process intensification breakthrough at ICI
  • 1.5. Separators
  • 1.5.1. The Podbielniak extractor
  • 1.5.2. Centrifugal evaporators
  • 1.5.3. The still of John Moss
  • 1.5.4. Extraction research in Bulgaria
  • 1.6. Reactors
  • 1.6.1. Catalytic plate reactors
  • 1.6.2. Polymerisation reactors
  • 1.6.3. Rotating fluidised bed reactor
  • 1.6.4. Reactors for space experiments
  • 1.6.5. Towards perfect reactors
  • 1.7. Non-chemical industry-related applications of rotating heat and mass transfer
  • 1.7.1. Rotating heat transfer devices
  • 1.8. Where are we today?
  • 1.8.1. Clean technologies
  • 1.8.2. Integration of process intensification and renewable energies
  • 1.8.3. PI and carbon capture
  • 1.9. Summary
  • References
  • ch. 2 Process Intensification
  • An Overview
  • 2.1. Introduction
  • 2.2. What is process intensification?
  • 2.3. The original ICI PI strategy
  • 2.4. The advantages of PI
  • 2.4.1. Safety
  • 2.4.2. The environment
  • 2.4.3. Energy
  • 2.4.4. The business process
  • 2.5. Some obstacles to PI
  • 2.6.A way forward
  • 2.7. To whet the reader's appetite
  • 2.8. Equipment summary
  • finding your way around this book
  • 2.9. Summary
  • References
  • ch. 3 The Mechanisms Involved in Process Intensification
  • 3.1. Introduction
  • 3.2. Intensified heat transfer
  • the mechanisms involved
  • 3.2.1. Classification of enhancement techniques
  • 3.2.2. Passive enhancement techniques
  • 3.2.3. Active enhancement methods
  • 3.2.4. System impact of enhancement/intensification
  • 3.3. Intensified mass transfer
  • the mechanisms involved
  • 3.3.1. Rotation
  • 3.3.2. Vibration
  • 3.3.3. Mixing
  • 3.4. Electrically enhanced processes
  • the mechanisms
  • 3.5. Micro fluidics
  • 3.5.1. Electrokinetics
  • 3.5.2. Magnetohydrodynamics (MHD)
  • 3.5.3. Opto-micro-fluidics
  • 3.6. Pressure
  • 3.7. Summary
  • References
  • ch. 4 Compact and Micro-heat Exchangers
  • 4.1. Introduction
  • 4.2.Compact heat exchangers
  • 4.2.1. The plate heat exchanger
  • 4.2.2. Printed circuit heat exchangers (PCHE)
  • 4.2.3. The Chart-flo heat exchanger
  • 4.2.4. Polymer film heat exchanger
  • 4.2.5. Foam heat exchangers
  • 4.2.6. Mesh heat exchangers
  • 4.3. Micro-heat exchangers
  • 4.4. What about small channels?
  • 4.5. Nano-fluids
  • 4.6. Summary
  • References
  • ch. 5 Reactors
  • 5.1. Reactor engineering theory
  • 5.1.1. Reaction kinetics
  • 5.1.2. Residence time distributions (RTDs)
  • 5.1.3. Heat and mass transfer in reactors
  • 5.2. Spinning disc reactors
  • 5.2.1. Exploitation of centrifugal fields
  • 5.2.2. The desktop continuous process
  • 5.2.3. The spinning disc reactor
  • 5.2.4. The Nusselt flow model
  • 5.2.5. Mass transfer
  • 5.2.6. Heat transfer
  • 5.2.7. Film-flow instability
  • 5.2.8. Film-flow studies
  • 5.2.9. Heat/mass transfer performance
  • 5.2.10. Spinning disc reactor applications
  • 5.3. Other rotating reactors
  • 5.3.1. Rotor stator reactors: the STT reactor
  • 5.3.2. Taylor-Couette reactor
  • 5.3.3. Rotating packed-bed reactors
  • 5.4. Oscillatory baffled reactors (OBRs)
  • 5.4.1. Gas-liquid systems
  • 5.4.2. Liquid-liquid systems
  • 5.4.3. Heat transfer
  • 5.4.4. OBR design
  • 5.4.5. Biological applications
  • 5.4.6. Solids suspension
  • 5.4.7. Crystallisation
  • 5.4.8. Oscillatory mesoreactors: scaling OBRs down
  • 5.4.9. Case study
  • 5.5. Micro-reactors (including HEX-reactors)
  • 5.5.1. The catalytic plate reactor (CPR)
  • 5.5.2. HEX-reactors
  • 5.5.3. The corning micro-structured reactor
  • 5.5.4. Constant power reactors
  • 5.6. Field-enhanced reactions/reactors
  • 5.6.1. Induction-heated reactor
  • 5.6.2. Sonochemical reactors
  • 5.6.3. Microwave enhancement
  • 5.6.4. Plasma reactors
  • 5.6.5. Laser-induced reactions
  • 5.7. Reactive separations
  • 5.7.1. Reactive distillation
  • 5.7.2. Reactive extraction
  • 5.7.3. Reactive adsorption
  • 5.8. Membrane reactors
  • 5.8.1. Tubular membrane reactor
  • 5.8.2. Membrane slurry reactor
  • 5.8.3. Biological applications of membrane reactors
  • 5.9. Supercritical operation
  • 5.9.1. Applications
  • 5.10. Miscellaneous intensified reactor types
  • 5.10.1. The Torbed reactor
  • 5.10.2. Catalytic reactive extruders
  • 5.10.3. Heat pipe reactors
  • 5.11. Summary
  • References
  • ch. 6 Intensification of Separation Processes
  • 6.1. Introduction
  • 6.2. Distillation
  • 6.2.1. Distillation
  • dividing wall columns
  • 6.2.2.Compact heat exchangers inside the column
  • 6.2.3. Cyclic distillation systems
  • 6.2.4. HiGee
  • 6.3. Centrifuges
  • 6.3.1. Conventional types
  • 6.3.2. The gas centrifuge
  • 6.4. Membranes
  • 6.5. Drying
  • 6.5.1. Electric drying and dewatering methods
  • 6.5.2. Membranes for dehydration
  • 6.6. Precipitation and crystallisation
  • 6.6.1. The environment for particle formation
  • 6.6.2. The spinning cone
  • 6.6.3. Electric fields to aid crystallisation of thin films
  • 6.7. Mop fan/deduster
  • 6.7.1. Description of the equipment
  • 6.7.2. Capture mechanism/efficiency
  • 6.7.3. Applications
  • 6.8. Electrolysis
  • 6.8.1. Introduction
  • 6.8.2. The effect of microgravity
  • 6.8.3. The effect of high gravity
  • 6.8.4. Current supply
  • 6.8.5. Rotary electrolysis cell design
  • 6.8.6. The static cell tests
  • 6.8.7. The rotary cell experiments
  • 6.9. Summary
  • References
  • ch. 7 Intensified Mixing
  • 7.1. Introduction
  • 7.2. Inline mixers
  • 7.2.1. Static mixers
  • 7.2.2. Ejectors
  • 7.2.3. Rotor stator mixers
  • 7.3. Mixing on a spinning disc
  • 7.4. Induction-heated mixer
  • 7.5. Summary
  • References
  • ch. 8 Application Areas
  • Petrochemicals and Fine Chemicals
  • 8.1. Introduction
  • 8.2. Refineries
  • 8.2.1. Catalytic plate reactor opportunities
  • 8.2.2. More speculative opportunities
  • 8.3. Bulk chemicals
  • 8.3.1. Stripping and gas clean-up
  • 8.3.2. Intensified methane reforming
  • 8.3.3. The hydrocarbon chain
  • 8.3.4. Reactive distillations for methyl and ethyl acetate
  • 8.3.5. Formaldehyde from methanol using micro-reactors
  • 8.3.6. Hydrogen peroxide production
  • the Degussa PI route
  • 8.3.7. Olefin hydroformylation
  • use of a HEX-reactor
  • 8.3.8. Polymerisation
  • the use of spinning disc reactors
  • 8.3.9. Akzo Nobel Chemicals
  • reactive distillation
  • 8.3.10. The gas turbine reactor
  • a challenge for bulk chemical manufacture
  • 8.3.11. Other bulk chemical applications in the literature
  • 8.4. Fine chemicals and pharmaceuticals
  • 8.4.1. Penicillin extraction
  • 8.4.2. AstraZeneca work on continuous reactors
  • 8.4.3. Micro-reactor for barium sulphate production
  • 8.4.4. Spinning disc reactor for barium carbonate production
  • 8.4.5. Spinning disc reactor for producing a drug intermediate
  • 8.4.6. SDR in the fragrance industry
  • 8.4.7.A continuous flow microwave reactor for production
  • 8.4.8. Ultrasound and the intensification of micro-encapsulation
  • 8.4.9. Powder coating technology
  • Akzo Nobel powder coatings Ltd
  • 8.4.10. Chiral amines
  • scaling up in the Coflore flow reactor
  • 8.4.11. Plant-wide PI in pharmaceuticals
  • 8.5. Bioprocessing or processing of bioderived feedstock
  • 8.5.1. Transesterification of vegetable oils
  • 8.5.2. Bioethanol to ethylene in a micro-reactor
  • 8.5.3. Base chemicals produced from biomass
  • 8.6. Intensified carbon capture
  • 8.6.1. Introduction
  • 8.6.2. Carbon capture methods
  • 8.6.3. Intensification of post-combustion carbon capture
  • 8.6.4. Intensification of carbon capture using other techniques
  • 8.7. Further reading
  • 8.8. Summary
  • References
  • ch. 9 Application Areas
  • Offshore Processing
  • 9.1. Introduction
  • 9.2. Some offshore scenarios
  • 9.2.1.A view from BP a decade ago
  • 9.2.2. More recent observations
  • those of ConocoPhillips
  • 9.2.3. One 2007 scenario
  • 9.3. Offshore on platforms or subsea
  • 9.3.1. Setting the scene
  • 9.3.2. Down hole heavy crude oil processing
  • 9.3.3.Compact heat exchangers offshore (and onshore)
  • 9.3.4. Extending the PCHE concept to reactors
  • 9.3.5. HiGee for enhanced oil recovery
  • surfactant synthesis
  • 9.3.6. Deoxygenation using high gravity fields
  • 9.3.7. RF heating to recover oil from shale
  • 9.4. Floating production, storage and offloading systems (FPSO) activities
  • 9.5.
  • Safety offshore
  • can PI help?
  • 9.6. Summary
  • References
  • ch. 10 Application Areas
  • Miscellaneous Process Industries
  • 10.1. Introduction
  • 10.2. The nuclear industry
  • 10.2.1. Highly compact heat exchangers for reactors
  • 10.2.2. Nuclear reprocessing
  • 10.2.3. Uranium enrichment by centrifuge
  • 10.3. The food and drink sector
  • 10.3.1. Barrier to PI
  • 10.3.2. Sector characteristics
  • 10.3.3. Induction-heated mixers
  • 10.3.4. Electric fields for drying and cooking
  • 10.3.5. Spinning discs in the food sector
  • 10.3.6. Deaeration systems for beverage packaging
  • 10.3.7. Intensified refrigeration
  • 10.3.8. Pursuit dynamics intensified mixing
  • 10.3.9. The Torbed reactor in food processing
  • 10.4. Textiles
  • 10.4.1. Textile preparation
  • 10.4.2. Textile finishing
  • 10.4.3. Textile effluent treatment
  • 10.4.4. Laundry processes
  • 10.4.5. Leather production
  • 10.5. The metallurgical and glass industries
  • 10.5.1. The metallurgical sector
  • 10.5.2. The glass and ceramics industry
  • 10.6. Aerospace
  • 10.7. Biotechnology
  • 10.7.1. Biodiesel production
  • 10.7.2. Waste/effluent treatment
  • 10.8. Summary
  • References
  • ch. 11 Application Areas
  • the Built Environment, Electronics, and the Home
  • 11.1. Introduction
  • 11.2. Refrigeration/heat pumping
  • 11.2.1. The Rotex chiller/heat pump
  • 11.2.2.Compact heat exchangers in heat pumps
  • 11.2.3. Micro-refrigerator for chip cooling
  • 11.2.4. Absorption and adsorption cycles
  • 11.3. Power generation
  • 11.3.1. Miniature fuel cells
  • 11.3.2. Micro turbines
  • 11.3.3. Batteries
  • 11.3.4. Pumps
  • 11.3.5. Energy scavenging
  • 11.4. Microelectronics
  • 11.4.1. Micro-fluidics
  • 11.4.2. Micro-heat pipes
  • electronics thermal control
  • 11.5. Summary
  • References