Cargando…

Numerical methods for roots of polynomials. Part II /

This book (along with vol. 2) covers most of the traditional methods for polynomial root-finding such as Newton's, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent's method, simultaneous iteratio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: McNamee, J. M. (Autor), Pan, V. Y. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; London : Elsevier Science, 2013.
Colección:Studies in computational mathematics ; 16.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn846901391
003 OCoLC
005 20231117044900.0
006 m o d
007 cr cnu---unuuu
008 130606s2013 ne ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OPELS  |d IDEBK  |d MHW  |d UIU  |d CDX  |d CUS  |d OCLCF  |d UPM  |d UKDOC  |d OCLCQ  |d CHVBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d U3W  |d D6H  |d CEF  |d NLE  |d UAB  |d LEAUB  |d AU@  |d OCLCO  |d LVT  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 843336097  |a 1302265944 
020 |a 9780080931432  |q (electronic bk.) 
020 |a 008093143X  |q (electronic bk.) 
020 |a 1299592457  |q (ebk) 
020 |a 9781299592452  |q (ebk) 
020 |z 9780444527301 
020 |z 0444527303 
035 |a (OCoLC)846901391  |z (OCoLC)843336097  |z (OCoLC)1302265944 
050 4 |a QA161.P59 
072 7 |a MAT  |x 002030  |2 bisacsh 
082 0 4 |a 512.9422  |2 23 
100 1 |a McNamee, J. M.,  |e author. 
245 1 0 |a Numerical methods for roots of polynomials.  |n Part II /  |c J.M. McNamee and V.Y. Pan. 
260 |a Amsterdam ;  |a London :  |b Elsevier Science,  |c 2013. 
300 |a 1 online resource (xxi, 726 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in computational mathematics ;  |v 16 
504 |a Includes bibliographical references and index. 
520 |a This book (along with vol. 2) covers most of the traditional methods for polynomial root-finding such as Newton's, as well as numerous variations on them invented in the last few decades. Perhaps more importantly it covers recent developments such as Vincent's method, simultaneous iterations, and matrix methods. There is an extensive chapter on evaluation of polynomials, including parallel methods and errors. There are pointers to robust and efficient programs. In short, it could be entitled "A Handbook of Methods for Polynomial Root-finding". This book will be invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloadedOffers a long chapter on matrix methods and includes Parallel methods and errors where appropriateProves invaluable for research or graduate course. 
588 0 |a Print version record. 
505 0 |a VOLUME 2; Chapter 7. Interpolation Methods; Chapter 8. Graeffe's and Integral Methods; Chapter 9. Methods Involving Derivatives Higher than First; Chapter 10. Existence, Solution by Radicals; VOLUME 3; Chapter 11. Bernoulli, QD, and Bairstow Methods; Chapter 12. Jenkins-Traub and Minimization Methods; Chapter 13. Low-degree, N'th roots; Chapter 14. Splitting Methods; Chapter 15. Miscellaneous; INDEX 
650 0 |a Polynomials. 
650 0 |a Equations, Roots of. 
650 6 |a Polyn�omes.  |0 (CaQQLa)201-0021342 
650 6 |a Racines des �equations.  |0 (CaQQLa)201-0066956 
650 7 |a MATHEMATICS  |x Algebra  |x Elementary.  |2 bisacsh 
650 7 |a Equations, Roots of  |2 fast  |0 (OCoLC)fst00914511 
650 7 |a Polynomials  |2 fast  |0 (OCoLC)fst01070715 
650 7 |a Polynoml�osung  |2 gnd  |0 (DE-588)4625226-5 
700 1 |a Pan, V. Y.,  |e author. 
776 0 8 |i Print version:  |a McNamee, J.M.  |t Numerical methods for roots of polynomials. Part II  |z 9780444527301  |w (OCoLC)827266981 
830 0 |a Studies in computational mathematics ;  |v 16. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444527301  |z Texto completo 
856 4 |u https://sciencedirect.uam.elogim.com/science/bookseries/1570579X/16  |z Texto completo