Cargando…

Structures in dynamics : finite dimensional deterministic studies /

The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers wh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Broer, H. W. (Hendrik Wolter), 1950-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : New York, N.Y. : North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., �1991.
Colección:Studies in mathematical physics ; v. 2.
Temas:
Acceso en línea:Texto completo
Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn846492973
003 OCoLC
005 20231117033106.0
006 m o d
007 cr cnu---unuuu
008 130603s1991 ne a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCE  |d OCLCO  |d OPELS  |d E7B  |d OPELS  |d OCLCF  |d UKDOC  |d YDXCP  |d OCLCQ  |d DEBSZ  |d LEAUB  |d OL$  |d OCLCO  |d OCLCA  |d VLY  |d LUN  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
019 |a 610077987  |a 1162228913 
020 |a 9780444596253  |q (electronic bk.) 
020 |a 0444596259  |q (electronic bk.) 
020 |z 0444892575 
020 |z 9780444892577 
020 |z 0444892583 
020 |z 9780444892584 
035 |a (OCoLC)846492973  |z (OCoLC)610077987  |z (OCoLC)1162228913 
042 |a dlr 
050 4 |a QA614.8  |b .S77 1991eb 
072 7 |a MAT  |x 007010  |2 bisacsh 
082 0 4 |a 515/.352  |2 22 
084 |a 33.27  |2 bcl 
084 |a 33.62  |2 bcl 
084 |a *58-01  |2 msc 
084 |a 00B15  |2 msc 
084 |a 37D45  |2 msc 
245 0 0 |a Structures in dynamics :  |b finite dimensional deterministic studies /  |c H.W. Broer [and others]. 
260 |a Amsterdam :  |b North-Holland ;  |a New York, N.Y. :  |b Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,  |c �1991. 
300 |a 1 online resource (xi, 309 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in mathematical physics ;  |v v. 2 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
520 |a The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic form. These include the presentation of an environment for the route to chaos by quasi-periodicity (which is related to the Landau-Lifschitz and Ruelle-Takens scenario's concerning the onset of turbulence); the theories of 1-dimensional dynamics, singularities in planar vector fields, and quasi-periodicity in dissipative systems. 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
505 0 |a Front Cover; Structures in Dynamics: Finite Dimensional Deterministic Studies; Copyright Page; Preface; Table of Contents; Chapter 1. Introduction to dynamical systems; 1.1 What is a dynamical system?; 1.2 Setting of the problem; 1.3 References; Chapter 2. Genericity and structural stability; 2.1 Persistence, topology; 2.2 Equivalent dynamics, structural stability; 2.3 Is structural stability a generic property?; 2.4 Miscellaneous remarks; 2.5 Vector fields on compact surfaces; 2.6 References; Chapter 3. Bifurcations; 3.1 The saddle node bifurcation; 3.2 The period doubling bifurcation 
505 8 |a 3.3 The Hopf bifurcation3.4 Final remarks; 3.5 References; Chapter 4. A family of quasi-periodic attractors; 4.1 Definition of quasi-periodicity, setting of the problem; 4.2 Two examples, a preliminary perturbation analysis; 4.3 The perturbation problem for circle maps; 4.4 Some conservative remarks; 4.5 References; Chapter 5. Chaos; 5.1 Time series; 5.2 Prediction procedure; 5.3 Interpretation of dimension and entropy for dynamical systems; 5.4 On the definition of chaos; 5.5 Chaos: probabilistic aspects; 5.6 References; Chapter 6. Interval maps; 6.1 Combinatorics of interval maps 
505 8 |a 6.2 Topological properties of interval maps6.3 Metric and statistical results; 6.4 Some final remarks; 6.5 References; Chapter 7. Local study of planar vector fields: singularities and their unfoldings; 7.1 Introduction; 7.2 Study of the singularities; 7.3 Versal unfoldings for singularities of vector fields; 7.4 Reduction to the centre manifold; 7.5 Blowing up; 7.6 Normal forms; 7.7 C��-unfoldings on R and semi-hyperbolic bifurcations on R2; 7.8 Hopf-Takens bifurcations on R2; 7.9 Some global bifurcations of codimension 1 on the plane; 7.10 The Bogdanov-Takens bifurcation; 7.11 References 
505 8 |a Chapter 8. The thermodynamic formalism8.1 Invariant measures for dynamical systems; 8.2 Measures describing thermodynamic states; 8.3 The Ruelle operator; 8.4 References; Chapter 9. Conservative dynamical systems; 9.1 Introduction; 9.2 Examples of integrable systems; 9.3 Hamiltonian systems; 9.4 Integrable systems; 9.5 Near integrability; 9.6 References; Subject index 
546 |a English. 
650 0 |a Differentiable dynamical systems. 
650 6 |a Dynamique diff�erentiable.  |0 (CaQQLa)201-0040977 
650 7 |a MATHEMATICS  |x Differential Equations  |x Ordinary.  |2 bisacsh 
650 7 |a Differentiable dynamical systems  |2 fast  |0 (OCoLC)fst00893426 
650 7 |a Nichtlineares dynamisches System  |2 gnd  |0 (DE-588)4126142-2 
650 7 |a Aufsatzsammlung  |2 gnd  |0 (DE-588)4143413-4 
650 1 7 |a Dynamische systemen.  |2 gtt 
650 1 7 |a Chaos.  |2 gtt 
650 1 7 |a Niet-lineaire dynamica.  |2 gtt 
650 7 |a Syst�emes dynamiques.  |2 ram 
650 7 |a Dynamique diff�erentiable.  |2 ram 
650 7 |a Physique math�ematique.  |2 ram 
700 1 |a Broer, H. W.  |q (Hendrik Wolter),  |d 1950- 
776 0 8 |i Print version:  |t Structures in dynamics.  |d Amsterdam : North-Holland ; New York, N.Y. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., �1991  |z 0444892575  |w (DLC) 91024883  |w (OCoLC)24067240 
830 0 |a Studies in mathematical physics ;  |v v. 2. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780444892577  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09258582/2  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/09258582  |z Texto completo