|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_ocn844428847 |
003 |
OCoLC |
005 |
20231117044857.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130524t20132013ne o 000 0 eng d |
010 |
|
|
|a 2013938729
|
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d CHVBK
|d OPELS
|d YDXCP
|d CUS
|d OCLCF
|d CDX
|d UPM
|d UIU
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCL
|d COCUF
|d UAB
|d LIV
|d OCLCQ
|d U3W
|d D6H
|d VT2
|d COO
|d OCLCQ
|d WYU
|d TKN
|d LEAUB
|d OCLCO
|d OCLCA
|d BRF
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1103264065
|a 1107342650
|a 1129368072
|
020 |
|
|
|a 1299610641
|q (ebk)
|
020 |
|
|
|a 9781299610644
|q (ebk)
|
020 |
|
|
|z 9780124051638
|
020 |
|
|
|z 0124051634
|
035 |
|
|
|a (OCoLC)844428847
|z (OCoLC)1103264065
|z (OCoLC)1107342650
|z (OCoLC)1129368072
|
050 |
|
4 |
|a Q337.3
|b .S93 2013
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
0 |
0 |
|a Swarm intelligence and bio-inspired computation :
|b theory and applications /
|c edited by Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet Karamanoglu.
|
264 |
|
1 |
|a Amsterdam ;
|a Boston :
|b Elsevier,
|c 2013.
|
264 |
|
4 |
|c �2013
|
300 |
|
|
|a 1 online resource (xviii, 422 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Elsevier insights
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Machine generated contents note: 1. Swarm Intelligence and Bio-Inspired Computation: An Overview -- 1.1. Introduction / Mehmet Karamanoglu / Xin-She Yang -- 1.2. Current Issues in Bio-Inspired Computing / Mehmet Karamanoglu / Xin-She Yang -- 1.2.1. Gaps Between Theory and Practice / Mehmet Karamanoglu / Xin-She Yang -- 1.2.2. Classifications and Terminology / Mehmet Karamanoglu / Xin-She Yang -- 1.2.3. Tuning of Algorithm-Dependent Parameters / Mehmet Karamanoglu / Xin-She Yang -- 1.2.4. Necessity for Large-Scale and Real-World Applications / Mehmet Karamanoglu / Xin-She Yang -- 1.2.5. Choice of Algorithms / Mehmet Karamanoglu / Xin-She Yang -- 1.3. Search for the Magic Formulas for Optimization / Mehmet Karamanoglu / Xin-She Yang -- 1.3.1. Essence of an Algorithm / Mehmet Karamanoglu / Xin-She Yang -- 1.3.2. What Is an Ideal Algorithm? / Mehmet Karamanoglu / Xin-She Yang -- 1.3.3. Algorithms and Self-Organization / Mehmet Karamanoglu / Xin-She Yang -- 1.3.4. Links Between Algorithms and Self-Organization / Mehmet Karamanoglu / Xin-She Yang -- 1.3.5. The Magic Formulas / Mehmet Karamanoglu / Xin-She Yang -- 1.4. Characteristics of Metaheuristics / Mehmet Karamanoglu / Xin-She Yang -- 1.4.1. Intensification and Diversification / Mehmet Karamanoglu / Xin-She Yang -- 1.4.2. Randomization Techniques / Mehmet Karamanoglu / Xin-She Yang -- 1.5. Swarm-Intelligence-Based Algorithms / Mehmet Karamanoglu / Xin-She Yang -- 1.5.1. Ant Algorithms / Mehmet Karamanoglu / Xin-She Yang -- 1.5.2. Bee Algorithms / Mehmet Karamanoglu / Xin-She Yang -- 1.5.3. Bat Algorithm / Mehmet Karamanoglu / Xin-She Yang -- 1.5.4. Particle Swarm Optimization / Mehmet Karamanoglu / Xin-She Yang -- 1.5.5. Firefly Algorithm / Mehmet Karamanoglu / Xin-She Yang -- 1.5.6. Cuckoo Search / Mehmet Karamanoglu / Xin-She Yang -- 1.5.7. Flower Pollination Algorithm / Mehmet Karamanoglu / Xin-She Yang -- 1.5.8. Other Algorithms / Mehmet Karamanoglu / Xin-She Yang -- 1.6. Open Problems and Further Research Topics / Mehmet Karamanoglu / Xin-She Yang -- References / Mehmet Karamanoglu / Xin-She Yang -- 2. Analysis of Swarm Intelligence-Based Algorithms for Constrained Optimization / Mehmet Karamanoglu / Xin-She Yang -- 2.1. Introduction / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.2. Optimization Problems / E. Dogan / M.P. Saka / Ibrahim Aydogdu -- 2.3. Swarm Intelligence-Based Optimization Algorithms / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.1. Ant Colony Optimization / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.2. Particle Swarm Optimizer / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.3. ABC Algorithm / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.4. Glowworm Swarm Algorithm / M.P. Saka / E. Dogan / Ibrahim Aydogdu -- 2.3.5. Firefly Algorithm / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.6. Cuckoo Search Algorithm / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.7. Bat Algorithm / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.3.8. Hunting Search Algorithm / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.4. Numerical Examples / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.4.1. Example 1 / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.4.2. Example 2 / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 2.5. Summary and Conclusions / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- References / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 3. L�evy Flights and Global Optimization / M.P. Saka / Ibrahim Aydogdu / E. Dogan -- 3.1. Introduction / Hans-J�urgen Zepernick / Momin Jamil -- 3.2. Metaheuristic Algorithms / Hans-J�urgen Zepernick / Momin Jamil -- 3.3. L�evy Flights in Global Optimization / Hans-J�urgen Zepernick / Momin Jamil -- 3.3.1. The L�evy Probability Distribution / Hans-J�urgen Zepernick / Momin Jamil -- 3.3.2. Simulation of L�evy Random Numbers / Hans-J�urgen Zepernick / Momin Jamil -- 3.3.3. Diversification and Intensification / Hans-J�urgen Zepernick / Momin Jamil -- 3.4. Metaheuristic Algorithms Based on L�evy Probability Distribution: Is It a Good Idea? / Hans-J�urgen Zepernick / Momin Jamil -- 3.4.1. Evolutionary Programming Using Mutations Based on the L�evy Probability Distribution / Hans-J�urgen Zepernick / Momin Jamil -- 3.4.2. L�evy Particle Swarm / Momin Jamil / Hans-J�urgen Zepernick -- 3.4.3. Cuckoo Search / Hans-J�urgen Zepernick / Momin Jamil -- 3.4.4. Modified Cuckoo Search / Hans-J�urgen Zepernick / Momin Jamil -- 3.4.5. Firefly Algorithm / Hans-J�urgen Zepernick / Momin Jamil -- 3.4.6. Eagle Strategy / Hans-J�urgen Zepernick / Momin Jamil -- 3.5. Discussion / Hans-J�urgen Zepernick / Momin Jamil -- 3.6. Conclusions / Hans-J�urgen Zepernick / Momin Jamil -- References / Hans-J�urgen Zepernick / Momin Jamil -- 4. Memetic Self-Adaptive Firefly Algorithm / Hans-J�urgen Zepernick / Momin Jamil -- 4.1. Introduction / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.2. Optimization Problems and Their Complexity / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3. Memetic Self-Adaptive Firefly Algorithm / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3.1. Self-Adaptation of Control Parameters / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3.2. Population Model / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3.3. Balancing Between Exploration and Exploitation / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3.4. The Local Search / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.3.5. Scheme of the MSA-FFA / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.4. Case Study: Graph 3-Coloring / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.4.1. Graph 3-Coloring / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.4.2. MSA-FFA for Graph 3-Coloring / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 4.4.3. Experiments and Results / Iztok Jr. Fister / Janez Brest / Xin-She Yang / Iztok Fister -- 4.5. Conclusions / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- References / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang.
|
505 |
8 |
|
|a 5. Modeling and Simulation of Ant Colony's Labor Division: A Problem-Oriented Approach / Iztok Fister / Iztok Jr. Fister / Janez Brest / Xin-She Yang -- 5.1. Introduction / Renbin Xiao -- 5.2. Ant Colony's Labor Division Behavior and its Modeling Description / Renbin Xiao -- 5.2.1. Ant Colony's Labor Division / Renbin Xiao -- 5.2.2. Ant Colony's Labor Division Model / Renbin Xiao -- 5.2.3. Some Analysis / Renbin Xiao -- 5.3. Modeling and Simulation of Ant Colony's Labor Division with Multitask / Renbin Xiao -- 5.3.1. Background Analysis / Renbin Xiao -- 5.3.2. Design and Implementation of Ant Colony's Labor Division Model with Multitask / Renbin Xiao -- 5.3.3. Supply Chain Virtual Enterprise Simulation / Renbin Xiao -- 5.3.4. Virtual Organization Enterprise Simulation / Renbin Xiao -- 5.3.5. Discussion / Renbin Xiao -- 5.4. Modeling and Simulation of Ant Colony's Labor Division with Multistate / Renbin Xiao -- 5.4.1. Background Analysis / Renbin Xiao -- 5.4.2. Design and Implementation of Ant Colony's Labor Division Model with Multistate / Renbin Xiao -- 5.4.3. Simulation Example of Ant Colony's Labor Division Model with Multistate / Renbin Xiao -- 5.5. Modeling and Simulation of Ant Colony's Labor Division with Multiconstraint / Renbin Xiao -- 5.5.1. Background Analysis / Renbin Xiao -- 5.5.2. Design and Implementation of Ant Colony's Labor Division Model with Multiconstraint / Renbin Xiao -- 5.5.3. Simulation Results and Analysis / Renbin Xiao -- 5.6. Concluding Remarks / Renbin Xiao -- Acknowledgment / Renbin Xiao -- References / Renbin Xiao -- 6. Particle Swarm Algorithm: Convergence and Applications / Renbin Xiao -- 6.1. Introduction / Shichang Sun / Hongbo Liu -- 6.2. Convergence Analysis / Shichang Sun / Hongbo Liu -- 6.2.1. Individual Trajectory / Shichang Sun / Hongbo Liu -- 6.2.2. Probabilistic Analysis / Shichang Sun / Hongbo Liu -- 6.3. Performance Illustration / Shichang Sun / Hongbo Liu -- 6.3.1. Dataflow Application / Shichang Sun / Hongbo Liu -- 6.4. Application in Hidden Markov Models / Shichang Sun / Hongbo Liu -- 6.4.1. Parameters Weighted HMM / Shichang Sun / Hongbo Liu -- 6.4.2. PSO-Viterbi for Parameters Weighted HMMs / Shichang Sun / Hongbo Liu -- 6.4.3. POS Tagging Problem and Solution / Shichang Sun / Hongbo Liu -- 6.4.4. Experiment / Shichang Sun / Hongbo Liu -- 6.5. Conclusions / Shichang Sun / Hongbo Liu -- References / Shichang Sun / Hongbo Liu -- 7.A Survey of Swarm Algorithms Applied to Discrete Optimization Problems / Shichang Sun / Hongbo Liu -- 7.1. Introduction / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2. Swarm Algorithms / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.1. Particle Swarm Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.2. Roach Infestation Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.3. Cuckoo Search Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.4. Firefly Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.5. Gravitational Search Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.6. Bat Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.7. Glowworm Swarm Optimization Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.8. Artificial Fish School Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.9. Bacterial Evolutionary Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.10. Bee Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes.
|
505 |
8 |
|
|a Note continued: 7.2.11. Artificial Bee Colony Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.12. Bee Colony Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.2.13. Marriage in Honey-Bees Optimization Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.3. Main Concerns to Handle Discrete Problems / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.3.1. Discretization Methods / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4. Applications to Discrete Problems / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.1. Particle Swarm Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.2. Roach Infestation Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.3. Cuckoo Search Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.4. Firefly Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.5. Bee Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.6. Artificial Bee Colony / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.7. Bee Colony Optimization / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.8. Marriage in Honey-Bees Optimization Algorithm / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.4.9. Other Swarm Intelligence Algorithms / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.5. Discussion / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 7.6. Concluding Remarks and Future Research / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- References / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 8. Test Functions for Global Optimization: A Comprehensive Survey / Jonas Krause / Jelson Cordeiro / Rafael Stubs Parpinelli / Heitor Silv�erio Lopes -- 8.1. Introduction / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 8.2.A Collection of Test Functions for GO / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 8.2.1. Unimodal Test Functions / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 8.2.2. Multimodal Function / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 8.3. Conclusions / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- References / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 9. Binary Bat Algorithm for Feature Selection / Momin Jamil / Xin-She Yang / Hans-J�urgen Zepernick -- 9.1. Introduction / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Douglas Rodrigues / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Xin-She Yang -- 9.2. Bat Algorithm / Xin-She Yang / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Douglas Rodrigues / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa -- 9.3. Binary Bat Algorithm / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Douglas Rodrigues / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Xin-She Yang -- 9.4. Optimum-Path Forest Classifier / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 9.4.1. Background Theory / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 9.5. Binary Bat Algorithm / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 9.6. Experimental Results / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 9.7. Conclusions / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- References / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 10. Intelligent Music Composition / Rodrigo Yuji Mizobe Nakamura / Luzs Augusto Martins Pereira / Xin-She Yang / Kelton Augusto Pontara Costa / Jo�ao Paulo Papa / Douglas Rodrigues -- 10.1. Introduction / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.2. Unsupervised Intelligent Composition / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.2.1. Unsupervised Composition with Cellular Automata / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.2.2. Unsupervised Composition with L-Systems / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.3. Supervised Intelligent Composition / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.3.1. Supervised Composition with Genetic Algorithms / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.3.2. Supervised Composition Genetic Programming / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.4. Interactive Intelligent Composition / Andreas Floros / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis -- 10.4.1.Composing with Swarms / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.4.2. Interactive Composition with GA and GP / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- 10.5. Conclusions / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros -- References / Maximos A. Kaliakatsos-Papakostas / Michael N. Vrahatis / Andreas Floros.
|
505 |
8 |
|
|a 11.A Review of the Development and Applications of the Cuckoo Search Algorithm / Maximos A. Kaliakatsos-Papakostas / Andreas Floros / Michael N. Vrahatis -- 11.1. Introduction / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2. Cuckoo Search Algorithm / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2.1. The Analogy / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2.2. Cuckoo Breeding Behavior / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2.3. L�evy Flights / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2.4. The Algorithm / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.2.5. Validation / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.3. Modifications and Developments / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.3.1. Algorithmic Modifications / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.3.2. Hybridization / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.4. Applications / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.4.1. Applications in Machine Learning / M. Rowan Brown / Kenneth Morgan / Oubay Hassan / Sean Walton -- 11.4.2. Applications in Design / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 11.5. Conclusion / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- References / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 12. Bio-Inspired Models for Semantic Web / Sean Walton / M. Rowan Brown / Kenneth Morgan / Oubay Hassan -- 12.1. Introduction / Rajendra Akerkar / Priti Srinivas Sajja -- 12.2. Semantic Web / Rajendra Akerkar / Priti Srinivas Sajja -- 12.3. Constituent Models / Priti Srinivas Sajja / Rajendra Akerkar -- 12.3.1. Artificial Neural Network / Priti Srinivas Sajja / Rajendra Akerkar -- 12.3.2. Genetic Algorithms / Rajendra Akerkar / Priti Srinivas Sajja -- 12.3.3. Swarm Intelligence / Rajendra Akerkar / Priti Srinivas Sajja -- 12.3.4. Application in Different Aspects of Semantic Web / Rajendra Akerkar / Priti Srinivas Sajja -- 12.4. Neuro-Fuzzy System for the Web Content Filtering: Application / Rajendra Akerkar / Priti Srinivas Sajja -- 12.5. Conclusions / Rajendra Akerkar / Priti Srinivas Sajja -- References / Rajendra Akerkar / Priti Srinivas Sajja -- 13. Discrete Firefly Algorithm for Traveling Salesman Problem: A New Movement Scheme / Rajendra Akerkar / Priti Srinivas Sajja -- 13.1. Introduction / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2. Evolutionary Discrete Firefly Algorithm / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.1. The Representation of the Firefly / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.2. Light Intensity / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.3. Distance / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.4. Attractiveness / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.5. Light Absorption / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.6. Movement / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.7. Inversion Mutation / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.2.8. EDFA Scheme / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.3.A New DFA for the TSP / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.3.1. Edge-Based Movement / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.3.2. New DFA Scheme / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.4. Result and Discussion / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.4.1. Firefly Population / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.4.2. Effect of Light Absorption / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.4.3. Number of Updating Index / Suyanto / Ruli Manurung / Gilang Kusuma Jati -- 13.4.4. Performance of New DFA / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 13.5. Conclusion / Gilang Kusuma Jati / Suyant.
|
505 |
0 |
|
|a Note continued: Acknowledgment / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- References / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 14. Modeling to Generate Alternatives Using Biologically Inspired Algorithms / Gilang Kusuma Jati / Suyanto / Ruli Manurung -- 14.1. Introduction / Julian Scott Yeomans / Raha Imanirad -- 14.2. Modeling to Generate Alternatives / Julian Scott Yeomans / Raha Imanirad -- 14.3. FA for Function Optimization / Julian Scott Yeomans / Raha Imanirad -- 14.4. FA-Based Concurrent Coevolutionary Computational Algorithm for MGA / Julian Scott Yeomans / Raha Imanirad -- 14.5.Computational Testing of the FA Used for MGA / Julian Scott Yeomans / Raha Imanirad -- 14.6. An SO Approach for Stochastic MGA / Julian Scott Yeomans / Raha Imanirad -- 14.7. Case Study of Stochastic MGA for the Expansion of Waste Management Facilities / Julian Scott Yeomans / Raha Imanirad -- 14.8. Conclusions / Julian Scott Yeomans / Raha Imanirad -- References / Julian Scott Yeomans / Raha Imanirad -- 15. Structural Optimization Using Krill Herd Algorithm / Julian Scott Yeomans / Raha Imanirad -- 15.1. Introduction / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.2. Krill Herd. Algorithm / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.2.1. Lagrangian Model of Krill Herding / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.3. Implementation and Numerical Experiments / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.3.1. Case I: Structural Design of a Pin-Jointed Plane Frame / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.3.2. Case II: A Reinforced Concrete Beam Design / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.3.3. Case III: 25-Bar Space Truss Design / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 15.4. Conclusions and Future Research / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- References / Amir Hossein Gandomi / Siamak Talatahari / Amir Hossein Alavi -- 16. Artificial Plant Optimization Algorithm / Amir Hossein Alavi / Amir Hossein Gandomi / Siamak Talatahari -- 16.1. Introduction / Xingjuan Cai / Zhihua Cui -- 16.2. Primary APOA / Xingjuan Cai / Zhihua Cui -- 16.2.1. Main Method / Xingjuan Cai / Zhihua Cui -- 16.2.2. Photosynthesis Operator / Xingjuan Cai / Zhihua Cui -- 16.2.3. Phototropism Operator / Xingjuan Cai / Zhihua Cui -- 16.2.4. Applications to Artificial Neural Network Training / Xingjuan Cai / Zhihua Cui -- 16.3. Standard APOA / Xingjuan Cai / Zhihua Cui -- 16.3.1. Drawbacks of PAPOA / Xingjuan Cai / Zhihua Cui -- 16.3.2. Phototropism Operator / Zhihua Cui / Xingjuan Cai -- 16.3.3. Apical Dominance Operator / Xingjuan Cai / Zhihua Cui -- 16.3.4. Application to Toy Model of Protein Folding / Xingjuan Cai / Zhihua Cui -- 16.4. Conclusion / Xingjuan Cai / Zhihua Cui -- Acknowledgment / Xingjuan Cai / Zhihua Cui -- References / Xingjuan Cai / Zhihua Cui.
|
505 |
8 |
|
|a 17. Genetic Algorithm for the Dynamic Berth Allocation Problem in Real Time / Xingjuan Cai / Zhihua Cui -- 17.1. Introduction / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.2. Literature Review / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.3. Optimization Model / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.3.1. Sets / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.3.2. Parameters / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.3.3. Decision Variables / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4. Solution Procedure by Genetic Algorithm / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4.1. Representation / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4.2. Fitness / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4.3. Selection of Parents and Genetic Operators / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4.4. Mutation / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.4.5. Crossover / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.5. Results and Analysis / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 17.6. Conclusion / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- References / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 18. Opportunities and Challenges of Integrating Bio-Inspired Optimization and Data Mining Algorithms / Carlos Arango / Luis Onieva / Alejandro Escudero / Pablo Cort�es -- 18.1. Introduction / Simon Fong -- 18.2. Challenges in Data Mining / Simon Fong -- 18.2.1. Curse of Dimensionality / Simon Fong -- 18.2.2. Data Streaming / Simon Fong -- 18.3. Bio-Inspired Optimization Metaheuristics / Simon Fong -- 18.4. The Convergence / Simon Fong -- 18.4.1. Integrating BiCam Algorithms into Clustering / Simon Fong -- 18.4.2. Integrating BiCam Algorithms into Feature Selection / Simon Fong -- 18.5. Conclusion / Simon Fong -- References / Simon Fong -- 19. Improvement of PSO Algorithm by Memory-Based Gradient Search-Application in Inventory Management / Simon Fong -- 19.1. Introduction / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.2. The Improved PSO Algorithm / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.2.1. Classical PSO Algorithm / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.2.2. Improved PSO Algorithm / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.2.3. Results / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.3. Stochastic Optimization of Multiechelon Supply Chain Model / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.3.1. Inventory Model of a Single Warehouse / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.3.2. Inventory Model of a Supply Chain / Tam�ar Varga / J�anos Abonyi / Andr�as Kir�aly -- 19.3.3. Optimization Results / Tam�ar Varga / Andr�as Kir�aly / J�anos Abonyi -- 19.4. Conclusion / Tam�ar Varga / Andr�as Kir�aly / J�anos Abonyi -- Acknowledgment / Tam�ar Varga / Andr�as Kir�aly / J�anos Abonyi.
|
520 |
8 |
|
|a Annotation
|b Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. Focuses on the introduction and analysis of key algorithms Includes case studies for real-world applicationsContains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.
|
504 |
|
|
|a Includes bibliographical references.
|
650 |
|
0 |
|a Swarm intelligence.
|
650 |
|
0 |
|a Natural computation.
|
650 |
|
6 |
|a Calcul naturel.
|0 (CaQQLa)000265307
|
650 |
|
7 |
|a Natural computation.
|2 fast
|0 (OCoLC)fst01745866
|
650 |
|
7 |
|a Swarm intelligence.
|2 fast
|0 (OCoLC)fst01139953
|
650 |
|
7 |
|a Schwarmintelligenz
|2 gnd
|0 (DE-588)4793676-9
|
650 |
|
7 |
|a Biocomputer
|2 gnd
|0 (DE-588)4270224-0
|
650 |
|
7 |
|a Bioinformatik
|2 gnd
|0 (DE-588)4611085-9
|
700 |
1 |
|
|a Yang, Xin-She,
|e editor.
|
700 |
1 |
|
|a Cui, Zhihua,
|e editor.
|
700 |
1 |
|
|a Xiao, Renbin,
|e editor.
|
700 |
1 |
|
|a Gandomi, Amir Hossein,
|e editor.
|
700 |
1 |
|
|a Karamanoglu, Mehmet,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Swarm intelligence and bio-inspired computation.
|b 1st ed.
|d Amsterdam ; Boston : Elsevier, 2013
|z 0124051634
|w (OCoLC)828670749
|
830 |
|
0 |
|a Elsevier insights.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124051638
|z Texto completo
|