|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn842939834 |
003 |
OCoLC |
005 |
20231117044808.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130514s1988 maua ob 001 0 eng d |
010 |
|
|
|z 87016792
|
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OPELS
|d IDEBK
|d E7B
|d OCLCF
|d YDXCP
|d EBLCP
|d MHW
|d DEBSZ
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d LEAUB
|d OCLCO
|d OCLCQ
|d LUN
|d EYM
|d OCLCO
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 819749087
|a 843637988
|a 850149289
|a 1285566844
|a 1301982785
|
020 |
|
|
|a 9780080917252
|q (electronic bk.)
|
020 |
|
|
|a 0080917259
|q (electronic bk.)
|
020 |
|
|
|z 0121634752
|
020 |
|
|
|z 9780121634759
|
035 |
|
|
|a (OCoLC)842939834
|z (OCoLC)819749087
|z (OCoLC)843637988
|z (OCoLC)850149289
|z (OCoLC)1285566844
|z (OCoLC)1301982785
|
050 |
|
4 |
|a QA273.6
|b .C36 1988eb
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 519.5
|2 22
|
084 |
|
|
|a 31.73
|2 bcl
|
084 |
|
|
|a *62-01
|2 msc
|
084 |
|
|
|a 60F05
|2 msc
|
084 |
|
|
|a 62E20
|2 msc
|
084 |
|
|
|a 62G30
|2 msc
|
084 |
|
|
|a 62N99
|2 msc
|
084 |
|
|
|a SK 840
|2 rvk
|
084 |
|
|
|a MAT 634f
|2 stub
|
100 |
1 |
|
|a Castillo, Enrique,
|d 1946-
|
245 |
1 |
0 |
|a Extreme value theory in engineering /
|c Enrique Castillo.
|
260 |
|
|
|a Boston :
|b Academic Press,
|c �1988.
|
300 |
|
|
|a 1 online resource (xv, 389 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Statistical modeling and decision science.
|
504 |
|
|
|a Includes bibliographical references (pages 341-382) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This book is a comprehensive guide to extreme value theory in engineering. Written for the end user with intermediate and advanced statistical knowledge, it covers classical methods as well as recent advances. A collection of 150 examples illustrates the theoretical results and takes the reader from simple applications through complex cases of dependence.
|
505 |
0 |
|
|a Front Cover; Extreme Value Theory in Engineering; Copyright Page; Table of Contents; Preface; Part I: Introduction; Chapter 1. Introduction and Motivation; 1.1. Introduction; 1.2. Some Engineering Examples Where Extreme Value Theory Is of Significance; 1.3. New Developments in Extreme Value Theory; 1.4. Aim of the Book; 1.5. Organization of the Book; 1.6. Some Classical Statistical Concepts; Part II: Order Statistics; Chapter 2. Order Statistics; 2.1. Introduction; 2.2. Concept of Order Statistic; 2.3. Order Statistics from Independent and Identically Distributed Samples.
|
505 |
8 |
|
|a 2.4. Order Statistics from Dependent SamplesPart III: Asymptotic Distribution of Sequences of Independent Random Variables; Chapter 3. Asymptotic Distributions of Maxima and Minima (I.I.D. Case); 3.1. Introduction and Motivation; 3.2. Statement of the Problem; 3.3. Limit Distributions and Domains of Attraction; 3.4. Von-Mises Forms; 3.5. Normalizing Constants; 3.6. Domain of Attraction of a Given Distribution; 3.7. Asymptotic Joint Distribution of Maxima and Minima; 3.8. Asymptotic Distributions of Range and Midrange; 3.9. Asymptotic Distributions of Maxima of Samples with Random Size.
|
505 |
8 |
|
|a 3.10. Approximation of Distribution Functions in Their Tails3.11. The Penultimate Form of Approximation to Extremes; Chapter 4. Shortcut Procedures: Probability Papers and Least-Squares Methods; 4.1. Introduction; 4.2. The Theoretical Bases of Probability Paper; 4.3. The Problem of Plotting Positions; 4.4. Acceptance Regions; 4.5. Some Recommendations for the Use of Probability Papers in Extreme Value Problems; 4.6. Weighted Least-Squares Methods; Chapter 5. The Gumbel, Weibull and Frechet Distributions; 5.1. Introduction; 5.2. The Gumbel Distribution; 5.3. The Weibull Distribution.
|
505 |
8 |
|
|a 5.4. The Frechet DistributionChapter 6. Selection of Limit Distributions from Data; 6.1. Statement of the Problem; 6.2. Methods for Determining the Domain of Attraction of a Parent Distribution from Samples; Chapter 7. Limit Distributions of k-th order Statistics; 7.1. Introduction; 7.2. Statement of the Problem and Previous Definitions; 7.3. Limit Distributions of Upper and Lower Order Statistics; 7.4. Limit Distributions of Other Order Statistics; 7.5. Asymptotic Distributions of k-th Order Statistics of Samples with Random Sizes.
|
505 |
8 |
|
|a Part IV: Asymptotic Distribution of Sequences of Dependent Random VariablesChapter 8. Limit Distributions in the Case of Dependence; 8.1. Introduction; 8.2. Exchangeable Variables; 8.3. Dependence Conditions; 8.4. Limit Distributions of Maxima and Minima; 8.5. Asymptotic Distributions of k-th Extremes; Part V: Multivariate Case; Chapter 9. Multivariate and Regression Models Related to Extremes; 9.1. Introduction; 9.2. Regression Models; 9.3. Bivariate Models with Weibull Conditionals; Chapter 10. Multivariate Extremes; 10.1. Introduction; 10.2. Dependence Functions; 10.3. Limit Distributions.
|
650 |
|
0 |
|a Extreme value theory.
|
650 |
|
0 |
|a Mathematical statistics.
|
650 |
|
6 |
|a Th�eorie des valeurs extr�emes.
|0 (CaQQLa)201-0084984
|
650 |
|
6 |
|a Statistique math�ematique.
|0 (CaQQLa)201-0002592
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Extreme value theory
|2 fast
|0 (OCoLC)fst00919070
|
650 |
|
7 |
|a Mathematical statistics
|2 fast
|0 (OCoLC)fst01012127
|
650 |
|
7 |
|a Extremwertstatistik
|2 gnd
|0 (DE-588)4153429-3
|
650 |
|
7 |
|a Statistique math�ematique.
|2 ram
|
650 |
|
7 |
|a Valeurs extr�emes, th�eorie des.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Castillo, Enrique, 1946-
|t Extreme value theory in engineering.
|d Boston : Academic Press, �1988
|z 0121634752
|w (DLC) 87016792
|w (OCoLC)17232708
|
830 |
|
0 |
|a Statistical modeling and decision science.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780121634759
|z Texto completo
|