Cargando…

Experimental methods and instrumentation for chemical engineers /

Experimental Methods and Instrumentation for Chemical Engineers is the first practical guide for instrumentation and experimental methods, necessary for chemical engineers - research engineers/students, process engineers (designing and maintaining plants), consultants, etc. This book combines experi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Patience, Gregory S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier, 2013.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. Overview
  • 1.2. Units of Physical Quantities
  • 1.3. Writing Conventions
  • 1.4. Unit Conversion
  • 1.5. Metrology
  • 1.6. Industrial Quality Control
  • 1.7. Exercises
  • References
  • 2.1. Overview
  • 2.2. Significant Figures
  • 2.3. Statistical Notions
  • 2.3.1. Normal (Gaussian) Distribution
  • 2.3.2. Criterion of Chauvenet
  • 2.3.3. Uncertainty (Type B)
  • 2.3.4. Confidence Intervals and Uncertainty (Type A)
  • 2.3.5. Uncertainty Propagation
  • 2.4. Instrumentation Concepts
  • 2.4.1. Interval
  • 2.4.2. Range
  • 2.4.3. Resolution, Sensitivity, Detection Limit, Threshold
  • 2.4.4. Precision
  • 2.4.5. Error
  • 2.4.6. Accuracy
  • 2.4.7. Repeatability and Reproducibility
  • 2.5. Representing Data Graphically
  • 2.5.1. Plotting Pitfalls
  • 2.5.2.3D and Contour Graphs
  • 2.5.3. Bar Charts
  • 2.6. Fast Fourier Transform (FFT)
  • 2.7. Exercises
  • References
  • 3.1. Overview
  • 3.2. Data and Experiments
  • 3.2.1. Monitoring
  • 3.2.2. Qualification
  • 3.2.3. Prove-Out
  • 3.2.4. Scouting/Process Development
  • 3.2.5. Troubleshooting
  • 3.3. Data Analysis
  • 3.3.1. Hypothesis Testing
  • 3.3.2. Statistical Tests
  • 3.3.3. Regression Analysis
  • 3.3.4. Coefficient of Determination
  • 3.3.5. Nonlinear Regression Analysis
  • 3.3.6. Data Smoothing
  • 3.4. Design of Experiments (DOE)
  • 3.4.1. Models
  • 3.4.2. Experimental Designs
  • 3.4.3. Factorial Designs
  • 3.4.4. Response Surface Designs
  • 3.5. Exercises
  • References
  • 4.1. Overview
  • 4.2. Units of Pressure
  • 4.3. Types of Pressure
  • 4.3.1. Atmospheric Pressure
  • 4.3.2. Gauge Pressure
  • 4.3.3. Differential Pressure
  • 4.3.4. Vacuum Pressure
  • 4.3.5. Static vs. Dynamic Pressure
  • 4.3.6. Barometric Pressure
  • 4.4. Pressure Measurement Instrumentation
  • 4.4.1. Barometer
  • 4.4.2.U-Tube Manometer
  • 4.4.3. Bourdon Gauge
  • 4.4.4. Diaphragm and Bellows
  • 4.4.5. Vacuum
  • 4.4.6. Capsule Pressure Gauge
  • 4.4.7. McLeod Gauge
  • 4.4.8. Pirani Gauge
  • 4.5. Process Equipment and Safety
  • 4.5.1. Pressure Regulator
  • 4.5.2. Back Pressure Regulator
  • 4.5.3. Relief Valves
  • 4.5.4. Rupture Disk
  • 4.5.5. Pressure Test
  • 4.5.6. Leak Test
  • 4.6. Exercises
  • References
  • 5.1. Overview
  • 5.2. Temperature Scales
  • 5.2.1. Wet-Bulb, Dry-Bulb Temperature, Dew Point
  • 5.2.2. Humidex, Heat Index
  • 5.2.3. Wind Chill Factor
  • 5.3. Mechanical Instruments
  • 5.3.1. Gas Thermometers
  • 5.3.2. Liquid Thermometers
  • 5.3.3. Bimetallic Thermometers
  • 5.4. Electrical Instruments
  • 5.4.1. Thermistors
  • 5.4.2. Resistance Temperature Devices (RTDs)
  • 5.4.3. Thermocouples
  • 5.4.4. Thermopile
  • 5.4.5. Radiation
  • 5.5. Pyrometry
  • 5.5.1. Thermal Radiation
  • 5.5.2. Pyrometers
  • 5.6. Exercises
  • References
  • 6.1. Overview
  • 6.2. Fluid Dynamics
  • 6.3. Flow Meter Selection
  • 6.4. Positive Displacement
  • 6.5. Differential Pressure
  • 6.5.1. Obstruction Meters-Orifice
  • 6.5.2. Obstruction Meters-Venturi
  • 6.5.3.Compressible Flow
  • 6.5.4. Restriction Orifice
  • 6.5.5. Pitot Tube
  • 6.6. Rotameters
  • 6.7. Thermal Mass Flow Meters
  • 6.7.1. Hot Wire Anemometry
  • 6.8. Coriolis
  • 6.9. Inferential-Turbine
  • 6.10. Oscillatory-Vortex
  • 6.11. Flow Meters in an Industrial Setting
  • 6.12. Exercises
  • References
  • 7.1. Overview
  • 7.2. Thermal Conductivity
  • 7.2.1. Definition
  • 7.2.2. Measurement of Solids
  • 7.2.3. Measurement of Fluids
  • 7.2.4. Pressure, Temperature Effects
  • 7.2.5. Insulation Design
  • 7.3. Viscosity
  • 7.3.1. Single Phase Flow
  • 7.3.2. Reynolds Number
  • 7.3.3. Prandtl Number
  • 7.3.4. Viscosity Instrumentation
  • 7.3.5. Influence of Temperature and Pressure on Viscosity
  • 7.4. Binary Gas Diffusion
  • 7.4.1. Fick's Law
  • 7.4.2. Schmidt Number
  • 7.4.3. Measure of Diffusion
  • 7.4.4. Temperature and Pressure Influence on the Diffusivity of Gases and Liquids
  • 7.5. Exercises
  • References
  • 8.1. Overview
  • 8.2. Chromatography
  • 8.2.1. The Distribution Coefficient
  • 8.2.2. The Capacity Factor
  • 8.2.3. The Selectivity Factor
  • 8.2.4. The Number of Theoretical Plates
  • 8.2.5. Eddy Diffusion
  • 8.2.6. Longitudinal Diffusion
  • 8.2.7. Resistance to Mass Transfer
  • 8.2.8. Resolution
  • 8.2.9. Gas Chromatography
  • 8.2.10. High-Performance Liquid Chromatography (HPLC)
  • 8.2.11. Method Development
  • 8.3. Mass Spectrometry
  • 8.4. Refractometry
  • 8.5. Spectroscopy
  • 8.5.1. Historical
  • 8.5.2. Fundamentals
  • 8.5.3. IR Spectroscopy
  • 8.5.4. Spectroscopy UV/Nisible
  • 8.6.X-Rays
  • 8.7. Exercises
  • References
  • 9.1. Overview
  • 9.2. Density
  • 9.2.1. Bulk Density
  • 9.2.2. Particle Density
  • 9.3. Diameter and Shape
  • 9.3.1. Engineering Applications
  • 9.3.2. Particle Terminal Velocity
  • 9.3.3. Equivalent Diameter
  • 9.3.4. Shape Factors-Sphericity
  • 9.3.5. Reactor Pressure Drop (Fixed/Packed Beds)
  • 9.3.6. Fluidization
  • 9.4. Particle Size Distribution
  • 9.4.1. Population of Particles
  • 9.5. Sampling
  • 9.5.1. Stability Testing
  • 9.6. PSD Analytical Techniques
  • 9.6.1. Sieve Analysis
  • 9.6.2. Laser Diffraction
  • 9.6.3. Microscopy
  • 9.6.4. Electrical Sensing Instruments
  • 9.7. Surface Area
  • 9.8. Exercises
  • References.