|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn840404756 |
003 |
OCoLC |
005 |
20231117044849.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130422s2013 ne a ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d COO
|d CUS
|d NHM
|d UPM
|d RIV
|d OCLCO
|d UIU
|d OCLCQ
|d OCLCF
|d U3W
|d D6H
|d LEAUB
|d LUN
|d EYM
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1167190312
|
020 |
|
|
|a 9781299461710
|q (MyiLibrary)
|
020 |
|
|
|a 1299461719
|q (MyiLibrary)
|
020 |
|
|
|z 9780444538048
|
020 |
|
|
|z 0444538046
|
020 |
|
|
|a 9780444538055
|q (ebk.)
|
020 |
|
|
|a 0444538054
|q (ebk.)
|
035 |
|
|
|a (OCoLC)840404756
|z (OCoLC)1167190312
|
050 |
|
4 |
|a TP155
|b .P38 2013
|
082 |
0 |
4 |
|a 660
|2 23
|
100 |
1 |
|
|a Patience, Gregory S.,
|e author.
|
245 |
1 |
0 |
|a Experimental methods and instrumentation for chemical engineers /
|c Gregory S. Patience.
|
250 |
|
|
|a 1st ed.
|
260 |
|
|
|a Amsterdam ;
|a Boston :
|b Elsevier,
|c 2013.
|
300 |
|
|
|a 1 online resource (xii, 371 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect; viewed on September 24, 2013).
|
520 |
|
|
|a Experimental Methods and Instrumentation for Chemical Engineers is the first practical guide for instrumentation and experimental methods, necessary for chemical engineers - research engineers/students, process engineers (designing and maintaining plants), consultants, etc. This book combines experimental measurements and instrumentation together with statistics with pertinent examples. Throughout this book, Patience examines all aspects of engineering practice and research. The principles of unit operations, transport phenomena, and plant design form the basis of this discipline. Experimental Methods and Instrumentation for Chemical Engineers integrates these concepts with statistics and uncertainty analysis to define what is absolutely necessary to measure and control how precisely and how often. Experimental Methods and Instrumentation for Chemical Engineers is divided into several themes, including the measurement of pressure, temperature flow rate, physico-chemical properties, gas and liquid concentrations and solids properties. Throughout the book, the concept of uncertainty is discussed in context, and the last chapter is dedicated to designing and experimental plan. The theory around the measurement principles is illustrated with examples. These examples include notions related to plant design as well as cost and safety. Contains extensive diagrams/photos, and other illustrations as well as manufactures equipment and descriptions, with up to date, detailed drawings and photosIncludes exercises at the end of each chapter, enabling the reader to understand the problem by solving real life examples. Broad and breadth coverage of the subject matter. Covers research and plant application and includes the new emerging technologies that are little discussed in other sources.
|
505 |
0 |
|
|a Machine generated contents note: 1.1. Overview -- 1.2. Units of Physical Quantities -- 1.3. Writing Conventions -- 1.4. Unit Conversion -- 1.5. Metrology -- 1.6. Industrial Quality Control -- 1.7. Exercises -- References -- 2.1. Overview -- 2.2. Significant Figures -- 2.3. Statistical Notions -- 2.3.1. Normal (Gaussian) Distribution -- 2.3.2. Criterion of Chauvenet -- 2.3.3. Uncertainty (Type B) -- 2.3.4. Confidence Intervals and Uncertainty (Type A) -- 2.3.5. Uncertainty Propagation -- 2.4. Instrumentation Concepts -- 2.4.1. Interval -- 2.4.2. Range -- 2.4.3. Resolution, Sensitivity, Detection Limit, Threshold -- 2.4.4. Precision -- 2.4.5. Error -- 2.4.6. Accuracy -- 2.4.7. Repeatability and Reproducibility -- 2.5. Representing Data Graphically -- 2.5.1. Plotting Pitfalls -- 2.5.2.3D and Contour Graphs -- 2.5.3. Bar Charts -- 2.6. Fast Fourier Transform (FFT) -- 2.7. Exercises -- References -- 3.1. Overview -- 3.2. Data and Experiments -- 3.2.1. Monitoring -- 3.2.2. Qualification -- 3.2.3. Prove-Out -- 3.2.4. Scouting/Process Development -- 3.2.5. Troubleshooting -- 3.3. Data Analysis -- 3.3.1. Hypothesis Testing -- 3.3.2. Statistical Tests -- 3.3.3. Regression Analysis -- 3.3.4. Coefficient of Determination -- 3.3.5. Nonlinear Regression Analysis -- 3.3.6. Data Smoothing -- 3.4. Design of Experiments (DOE) -- 3.4.1. Models -- 3.4.2. Experimental Designs -- 3.4.3. Factorial Designs -- 3.4.4. Response Surface Designs -- 3.5. Exercises -- References -- 4.1. Overview -- 4.2. Units of Pressure -- 4.3. Types of Pressure -- 4.3.1. Atmospheric Pressure -- 4.3.2. Gauge Pressure -- 4.3.3. Differential Pressure -- 4.3.4. Vacuum Pressure -- 4.3.5. Static vs. Dynamic Pressure -- 4.3.6. Barometric Pressure -- 4.4. Pressure Measurement Instrumentation -- 4.4.1. Barometer -- 4.4.2.U-Tube Manometer -- 4.4.3. Bourdon Gauge -- 4.4.4. Diaphragm and Bellows -- 4.4.5. Vacuum -- 4.4.6. Capsule Pressure Gauge -- 4.4.7. McLeod Gauge -- 4.4.8. Pirani Gauge -- 4.5. Process Equipment and Safety -- 4.5.1. Pressure Regulator -- 4.5.2. Back Pressure Regulator -- 4.5.3. Relief Valves -- 4.5.4. Rupture Disk -- 4.5.5. Pressure Test -- 4.5.6. Leak Test -- 4.6. Exercises -- References -- 5.1. Overview -- 5.2. Temperature Scales -- 5.2.1. Wet-Bulb, Dry-Bulb Temperature, Dew Point -- 5.2.2. Humidex, Heat Index -- 5.2.3. Wind Chill Factor -- 5.3. Mechanical Instruments -- 5.3.1. Gas Thermometers -- 5.3.2. Liquid Thermometers -- 5.3.3. Bimetallic Thermometers -- 5.4. Electrical Instruments -- 5.4.1. Thermistors -- 5.4.2. Resistance Temperature Devices (RTDs) -- 5.4.3. Thermocouples -- 5.4.4. Thermopile -- 5.4.5. Radiation -- 5.5. Pyrometry -- 5.5.1. Thermal Radiation -- 5.5.2. Pyrometers -- 5.6. Exercises -- References -- 6.1. Overview -- 6.2. Fluid Dynamics -- 6.3. Flow Meter Selection -- 6.4. Positive Displacement -- 6.5. Differential Pressure -- 6.5.1. Obstruction Meters-Orifice -- 6.5.2. Obstruction Meters-Venturi -- 6.5.3.Compressible Flow -- 6.5.4. Restriction Orifice -- 6.5.5. Pitot Tube -- 6.6. Rotameters -- 6.7. Thermal Mass Flow Meters -- 6.7.1. Hot Wire Anemometry -- 6.8. Coriolis -- 6.9. Inferential-Turbine -- 6.10. Oscillatory-Vortex -- 6.11. Flow Meters in an Industrial Setting -- 6.12. Exercises -- References -- 7.1. Overview -- 7.2. Thermal Conductivity -- 7.2.1. Definition -- 7.2.2. Measurement of Solids -- 7.2.3. Measurement of Fluids -- 7.2.4. Pressure, Temperature Effects -- 7.2.5. Insulation Design -- 7.3. Viscosity -- 7.3.1. Single Phase Flow -- 7.3.2. Reynolds Number -- 7.3.3. Prandtl Number -- 7.3.4. Viscosity Instrumentation -- 7.3.5. Influence of Temperature and Pressure on Viscosity -- 7.4. Binary Gas Diffusion -- 7.4.1. Fick's Law -- 7.4.2. Schmidt Number -- 7.4.3. Measure of Diffusion -- 7.4.4. Temperature and Pressure Influence on the Diffusivity of Gases and Liquids -- 7.5. Exercises -- References -- 8.1. Overview -- 8.2. Chromatography -- 8.2.1. The Distribution Coefficient -- 8.2.2. The Capacity Factor -- 8.2.3. The Selectivity Factor -- 8.2.4. The Number of Theoretical Plates -- 8.2.5. Eddy Diffusion -- 8.2.6. Longitudinal Diffusion -- 8.2.7. Resistance to Mass Transfer -- 8.2.8. Resolution -- 8.2.9. Gas Chromatography -- 8.2.10. High-Performance Liquid Chromatography (HPLC) -- 8.2.11. Method Development -- 8.3. Mass Spectrometry -- 8.4. Refractometry -- 8.5. Spectroscopy -- 8.5.1. Historical -- 8.5.2. Fundamentals -- 8.5.3. IR Spectroscopy -- 8.5.4. Spectroscopy UV/Nisible -- 8.6.X-Rays -- 8.7. Exercises -- References -- 9.1. Overview -- 9.2. Density -- 9.2.1. Bulk Density -- 9.2.2. Particle Density -- 9.3. Diameter and Shape -- 9.3.1. Engineering Applications -- 9.3.2. Particle Terminal Velocity -- 9.3.3. Equivalent Diameter -- 9.3.4. Shape Factors-Sphericity -- 9.3.5. Reactor Pressure Drop (Fixed/Packed Beds) -- 9.3.6. Fluidization -- 9.4. Particle Size Distribution -- 9.4.1. Population of Particles -- 9.5. Sampling -- 9.5.1. Stability Testing -- 9.6. PSD Analytical Techniques -- 9.6.1. Sieve Analysis -- 9.6.2. Laser Diffraction -- 9.6.3. Microscopy -- 9.6.4. Electrical Sensing Instruments -- 9.7. Surface Area -- 9.8. Exercises -- References.
|
650 |
|
0 |
|a Chemical engineering
|x Methodology.
|
650 |
|
0 |
|a Chemical engineering
|x Safety measures.
|
650 |
|
6 |
|a G�enie chimique
|0 (CaQQLa)201-0008929
|x M�ethodologie.
|0 (CaQQLa)201-0379663
|
650 |
|
6 |
|a G�enie chimique
|0 (CaQQLa)201-0008929
|x S�ecurit�e
|0 (CaQQLa)201-0373949
|x Mesures.
|0 (CaQQLa)201-0373949
|
650 |
|
7 |
|a Chemical engineering
|x Safety measures
|2 fast
|0 (OCoLC)fst00852920
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444538048
|z Texto completo
|