|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
SCIDIR_ocn839882342 |
003 |
OCoLC |
005 |
20231117044848.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130418t20132013ne a ob 001 0 eng d |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d OPELS
|d N$T
|d CUV
|d YDXCP
|d OCLCQ
|d OCLCF
|d UPM
|d GGVRL
|d EBLCP
|d COO
|d UKDOC
|d DEBSZ
|d OCLCQ
|d ICA
|d COCUF
|d AGLDB
|d K6U
|d Z5A
|d YDX
|d MERUC
|d ESU
|d SAV
|d OCLCQ
|d ZCU
|d U3W
|d D6H
|d VTS
|d ICG
|d INT
|d AU@
|d OCLCO
|d OCLCQ
|d MERER
|d OCLCO
|d CUY
|d OCLCO
|d OCLCA
|d OCLCQ
|d OCLCA
|d STF
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCO
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCA
|d MM9
|d OCLCO
|d OCLCQ
|d OCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 841171986
|a 850221062
|a 966487406
|
020 |
|
|
|a 9780240821313
|q (electronic bk.)
|
020 |
|
|
|a 0240821319
|q (electronic bk.)
|
020 |
|
|
|z 9780124158740
|q (hbk.)
|
020 |
|
|
|z 0124158749
|q (hbk.)
|
035 |
|
|
|a (OCoLC)839882342
|z (OCoLC)841171986
|z (OCoLC)850221062
|z (OCoLC)966487406
|
050 |
|
4 |
|a QL493
|b .H69 2013
|
072 |
|
7 |
|a SCI
|x 049000
|2 bisacsh
|
082 |
0 |
4 |
|a 595.7
|2 23
|
100 |
1 |
|
|a Hoy, Marjorie A.,
|e author.
|
245 |
1 |
0 |
|a Insect molecular genetics :
|b an introduction to principles and applications /
|c Marjorie A. Hoy.
|
250 |
|
|
|a Third edition.
|
264 |
|
1 |
|a Amsterdam :
|b Academic Press,
|c [2013]
|
264 |
|
4 |
|c �2013
|
300 |
|
|
|a 1 online resource (xxvii, 808 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a Note continued: 9.3.P Elements and Hybrid Dysgenesis -- 9.4.P-Element Structure Varies -- 9.5. Transposition Method of P Elements -- 9.6. Origin of P Elements in D. melanogaster -- 9.7.P Vectors and Germ-Line Transformation -- 9.7.1. Protocols -- 9.7.2. Characterizing Transformants -- 9.8. Using P-Element Vectors -- 9.8.1. Transposon Tagging -- 9.8.2. Expressing Exogenous Genes -- 9.8.3. Evaluating Position Effects -- 9.8.4. Targeted Gene Transfer -- 9.9. Transformation of Other Insects with P Vectors -- 9.10. Evolution of Resistance to P Elements -- 9.11. Using P to Drive Genes into Populations -- 9.12. Relationship of P to Other Transposable Elements (TEs) -- 9.13. Other TEs Can Transform D. melanogaster -- 9.14. Improved Transformation Tools for Drosophila -- 9.15. TE Vectors to Transform Insects other than Drosophila -- 9.15.1.piggyBac -- 9.15.2. Hermes and Herves -- 9.15.3. Minos -- 9.15.4.mariner -- 9.15.5.hobo -- 9.16. Cross Mobilization of TE Vectors -- 9.17. Conversion of Inactive TE Vectors to Activity -- 9.18. Suppression of Transgene Expression -- 9.19. Other Transformation Methods -- 9.19.1. JcDNV Gene Vectors for Somatic Transformations v -- 9.19.2. RNAi for Drosophila -- 9.19.3. Zinc-Finger Nucleases (ZFNs) -- 9.19.4. Transcription Activator-Like Effector Nucleases (TALENs) -- 9.19.5. Meganucleases (or Homing Endonucleases) -- 9.19.6. Cell-Penetrating Peptides -- 9.19.7. Nanotechnology Approaches -- 9.20. Conclusions -- General References -- References Cited -- pt. III APPLICATIONS IN ENTOMOLOGY -- ch. 10 Sex Determination in Insects -- 10.1. Overview -- 10.2. Introduction -- 10.3. Costs and Benefits of Sexual Reproduction -- 10.3.1. Sexual Reproduction Has Costs -- 10.3.2. Advantages of Sex Must Be Large -- 10.3.3. Origin of Sex -- 10.4. Sex Determination Involves Soma and Germ-Line Tissues -- 10.5. Sex Determination in Drosophila melanogaster -- 10.5.1. Dosage Compensation of X Chromosomes -- 10.5.2. Somatic-Sex Determination -- 10.5.3. Germ-Line Determination -- 10.6. Are Sex-Determination Mechanisms Diverse? -- 10.6.1. Intraspecific Variability -- 10.6.2. Environmental Effects -- 10.6.3. Postzygotic Sex Determination -- 10.7.A Single Model? -- 10.8. Meiotic Drive Can Distort Sex Ratios -- 10.8.1. Segregation Distorter (SD) -- 10.8.2. Distorter in Mosquitoes -- 10.8.3. Female-Biased Sex Ratios in Stalk-Eyed Flies -- 10.8.4. Meiotic Drive as a Pest-Management Tool? -- 10.9. Hybrid Sterility -- 10.10. Medea in Tribolium -- 10.11. Cytoplasmic Agents Distort Normal Sex Ratios -- 10.11.1. Spiroplasma Strains -- 10.11.2.L-Form Bacteria -- 10.11.3. Rickettsia -- 10.11.4. Wolbachia -- 10.11.5. Cardinium -- 10.12. Paternal Sex-Ratio Chromosomes and Cytoplasmic Incompatibility in Nasonia -- 10.13. Male Killing in the Coccinellidae -- 10.14. Sex and the Sorted Insects -- 10.14.1. Genetic Control -- 10.14.2. Genetic Improvement of Parasitoids -- 10.15. Conclusion -- References Cited -- ch. 11 Molecular Genetics of Insect Behavior -- 11.1. Overview -- 11.2. Introduction -- 11.3. The Insect Nervous System -- 11.4. Traditional Genetic Analyses of Behavior -- 11.4.1. Crossing Experiments -- 11.4.2. Selection Experiments -- 11.4.3. Some Polygenically Determined Behaviors -- 11.5. Molecular-Genetic Analyses of Insect Behavior -- 11.5.1. The Photoperiodic Clock -- 11.5.2. Learning in Drosophila -- 11.5.3. Functional Genomics of Odor Behavior in Drosophila -- 11.5.4. Behavior of Apis mellifera -- 11.5.5. Pheromones in Insects -- 11.5.6. Neurobiochemistry of Drosophila -- 11.5.7. Divergent Functions of Est-6 and Est-5 in Two Drosophila Species: A Cautionary Tale of Homologs -- 11.5.8. Courtship Behavior in Drosophila -- 11.5.9. Speciation Genes in Drosophila and Other Insects -- 11.5.10. Personality in Insects: Tribolium confusum, Apis mellifera, Acyrthosiphon pisum, and Pyrrhocoris apterus -- 11.6. Symbionts and Insect Behavior -- 11.7. Human Neurodegenerative Diseases and Addictions in Drosophila -- 11.8. High-Throughput Ethomics -- 11.9. Systems Genetics of Complex Traits in Drosophila -- 11.10. Social Behavior in Bees and Ants -- 11.11. Conclusions -- References Cited -- ch. 12 Molecular Systematics and the Evolution of Arthropods -- 12.1. Overview -- 12.2. Introduction -- 12.3. Controversies in Molecular Systematics and Evolution -- 12.3.1. Molecular versus Morphological Traits -- 12.3.2. The Molecular Clock -- 12.3.3. The Neutral (or Nearly Neutral) Theory of Evolution -- 12.3.4. Homology and Similarity -- 12.4. Molecular Methods for Molecular Systematics and Evolution -- 12.4.1. Protein Electrophoresis -- 12.4.2. Molecular Cytology -- 12.4.3. Restriction Fragment Length Polymorphism (RFLP) Analysis -- 12.4.4. DNA and Genome Sequencing -- 12.4.5. Fragment Analyses of Genomic DNA -- 12.5. Targets of DNA Analysis -- 12.5.1. Mitochondria -- 12.5.2. Ribosomal RNA -- 12.5.3. Satellite DNA -- 12.5.4. Introns -- 12.5.5. Nuclear Protein-Coding Genes -- 12.5.6. Rare Genomic Changes -- 12.5.7. MicroRNAs -- 12.6. Steps in Phylogenetic Analysis of DNA Sequence Data -- 12.6.1. Gene Trees or Species Trees -- 12.6.2. Rooted or Unrooted Trees -- 12.6.3. Tree Types -- 12.6.4. Project Goals and Appropriate DNA Sequences -- 12.6.5. Sequence Comparisons with BLAST -- 12.6.6. Aligning Sequences -- 12.6.7. Constructing Phylogenies -- 12.6.8. Artifacts -- 12.6.9. Software Packages -- 12.7. The Universal Tree of Life -- 12.7.1. Two Domains -- 12.7.2. Three Domains -- 12.7.3. Origin of Eukaryota -- 12.8. The Fossil Record of Arthropods -- 12.9. Molecular Analyses of Arthropod Phylogeny -- 12.9.1. Evolution of the Ecdysozoa -- 12.9.2. Relationships among the Arthropoda -- 12.9.3. The Phylogeny of the Holometabola -- 12.9.4. Congruence Between Morphology- and Molecular-Based Trees -- 12.9.5. Genomes and Arthropod Phylogenies -- 12.10. Molecular Evolution and Speciation -- 12.10.1. Species Concepts -- 12.10.2. How Many Genes are Involved in Speciation? -- 12.10.3. Detecting Cryptic Species -- 12.11. Some Conclusions -- Relevant Journals -- References Cited -- ch. 13 Insect Population Ecology and Molecular Genetics -- 13.1. Overview -- 13.2. Introduction -- 13.3. What is Molecular Ecology? -- 13.4. Collecting Arthropods in the Field for Analysis -- 13.5. Molecular Ecological Methods -- 13.5.1. Allele-Specific PCR -- 13.5.2. Allozymes (Protein Electrophoresis) -- 13.5.3. Amplified Fragment Length Polymorphisms (AFLP-PCR) -- 13.5.4. Double-Strand Conformation Polymorphism (DSCP) -- 13.5.5. Heteroduplex Analysis (HDA) -- 13.5.6. Microarrays -- 13.5.7. Microsatellites -- 13.5.8. RFLP Analysis -- 13.5.9. PCR-RFLP -- 13.5.10. RAPD-PCR -- 13.5.11. Sequencing -- 13.5.12. Single Nucleotide Polymorphism (SNP) Markers -- 13.6. Analysis of Molecular Data -- 13.6.1. Allozymes -- 13.6.2. Microsatellites -- 13.6.3. RAPD-PCR -- 13.6.4. RFLPs -- 13.6.5. Sequencing -- 13.7. Case Studies in Molecular Ecology and Population Biology -- 13.7.1. Genetic Variability in the Fall Army worm: Incipient Species or Multiple Species? -- 13.7.2. Analyses of Natural Enemies -- 13.7.3. Population Isolation and Introgression in Periodical Cicadas -- 13.7.4. Eradicating Medflies in California? -- 13.7.5. Plant Defenses to Insect Herbivory -- 13.7.6. Origins of Insect Populations -- 13.8. Applied Pest Management -- 13.8.1. Monitoring Biotypes, Species, and Cryptic Species -- 13.8.2. Monitoring Vectors of Disease -- 13.8.3. Pesticide Resistances and Pest Management -- 13.8.4. Monitoring Pest-Population Biology -- 13.8.5. The "So What?" Test -- Relevant Journals -- References Cited -- ch. 14 Genetic Modification of Pest and Beneficial Insects for Pest-Management Programs -- 14.1. Overview -- 14.2. Introduction -- 14.3. Why Genetically Modify Insects? -- 14.3.1. Beneficial Insects -- 14.3.2. Pest Insects -- 14.4. Why Use Molecular-Genetic Methods? -- 14.5. What Genetic Modification Methods are Available? -- 14.5.1. Transposable-Element (TE) Vectors and Transgenesis -- 14.5.2. Paratransgenesis (Genetic Modification of Symbionts) -- 14.5.3. Viral Vectors -- 14.5.4. Transfer of Wolbachia from Another Arthropod -- 14.5.5. Site-Specific Modifications -- 14.5.6. No Vectors -- 14.5.7. RNAi to Control Pests -- 14.6. Methods to Deliver Exogenous Nucleic Acids into Arthropod Tissues -- 14.7. What Genes are Available? -- 14.8. Why are Regulatory Signals Important? -- 14.9. How are Modified Arthropods Identified? -- 14.10. How to Deploy Genetically Modified Pest and Beneficial Arthropods -- 14.11.
|
505 |
0 |
|
|
505 |
0 |
|
|a Potential Risks Associated with Releases of Genetically Modified Arthropods -- 14.11.1. Could Gene Silencing Reduce Program Effectiveness? -- 14.11.2. Relative Risks -- 14.11.3. General Risk Issues -- 14.11.4. Horizontal Transfer (HT) -- 14.12. Permanent Releases of Genetically Modified Arthropods into the Environment -- 14.12.1. Models to Predict? -- 14.13. Regulatory Issues: Releases of Genetically Modified Arthropods -- 14.14. Conclusions -- References Cited.
|
520 |
|
|
|a This book summarizes and synthesizes two rather disparate disciplines-entomology and molecular genetics. It provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools.
|
650 |
|
0 |
|a Insects
|x Molecular genetics.
|
650 |
|
0 |
|a Arthropoda.
|
650 |
|
0 |
|a Insects.
|
650 |
|
0 |
|a Molecular structure.
|
650 |
|
2 |
|a Arthropods
|0 (DNLM)D001181
|
650 |
|
2 |
|a Chemical Phenomena
|0 (DNLM)D055598
|
650 |
|
2 |
|a Phenomena and Processes
|
650 |
|
2 |
|a Biochemical Phenomena
|0 (DNLM)D001669
|
650 |
|
2 |
|a Invertebrates
|0 (DNLM)D007448
|
650 |
|
2 |
|a Animals
|0 (DNLM)D000818
|
650 |
|
2 |
|a Eukaryota
|0 (DNLM)D056890
|
650 |
|
2 |
|a Organisms
|
650 |
|
2 |
|a Insecta
|0 (DNLM)D007313
|
650 |
|
2 |
|a Molecular Structure
|0 (DNLM)D015394
|
650 |
|
2 |
|a Genetic Phenomena
|0 (DNLM)D055614
|
650 |
|
4 |
|a Zoology.
|
650 |
|
4 |
|a Health & Biological Sciences.
|
650 |
|
4 |
|a Invertebrates & Protozoa.
|
650 |
|
6 |
|a Insectes
|0 (CaQQLa)201-0001443
|x G�en�etique mol�eculaire.
|0 (CaQQLa)201-0378951
|
650 |
|
6 |
|a Arthropodes.
|0 (CaQQLa)201-0001842
|
650 |
|
6 |
|a Insectes.
|0 (CaQQLa)201-0001443
|
650 |
|
6 |
|a Structure mol�eculaire.
|0 (CaQQLa)201-0015097
|
650 |
|
7 |
|a molecular structure.
|2 aat
|0 (CStmoGRI)aat300218794
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Molecular Biology.
|2 bisacsh
|
650 |
|
7 |
|a Molecular structure.
|2 fast
|0 (OCoLC)fst01024846
|
650 |
|
7 |
|a Insects.
|2 fast
|0 (OCoLC)fst00974074
|
650 |
|
7 |
|a Arthropoda.
|2 fast
|0 (OCoLC)fst00817139
|
650 |
|
7 |
|a Insects
|x Molecular genetics.
|2 fast
|0 (OCoLC)fst00974149
|
776 |
0 |
8 |
|i Print version:
|a Hoy, Marjorie A.
|t Insect molecular genetics.
|b Third edition.
|d Amsterdam : Academic Press, 2013
|z 9780124158740
|w (OCoLC)829055538
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780124158740
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g 4.17.
|t Evo-Devo and the Revolution in Developmental Studies --
|t References Cited --
|g pt. II
|t MOLECULAR GENETIC TECHNIQUES --
|g ch. 5
|t Some Basic Tools: How to Cut, Paste, Copy, Measure, Visualize, and Clone DNA --
|g 5.1.
|t Overview --
|g 5.2.
|t Introduction to a Basic Molecular Biology Experiment --
|g 5.2.1.
|t The Pros and Cons of Kits --
|g 5.2.2.
|t A Simple Cloning Experiment --
|g 5.3.
|t Extracting DNA from Insects --
|g 5.3.1.
|t DNA Extraction Resulting in Loss of the Specimens --
|g 5.3.2.
|t DNA Extraction That Does Not Require Destroying the Specimens --
|g 5.3.3.
|t Assessing the Quality of Extracted DNA --
|g 5.4.
|t Precipitating Nucleic Acids --
|g 5.5.
|t Shearing DNA --
|g 5.6.
|t Cutting DNA with Restriction Endonucleases --
|g 5.7.
|t Joining DNA Molecules --
|g 5.8.
|t Growth, Maintenance, and Storage of E. coli --
|g 5.9.
|t Plasmids for Cloning in E. coli --
|g 5.10.
|t Transforming E. coli with Plasmids --
|g 5.11.
|t Purifying Plasmid DNA from E. coli --
|g 5.12.
|t Electrophoresis in Agarose or Acrylamide Gels --
|g 5.13.
|t Detecting, Viewing, and Photographing Nucleic Acids in Gels --
|g 5.14.
|t Identifying Specific DNA by Southern Blot Analysis --
|g 5.15.
|t Labeling DNA or RNA Probes --
|g 5.16.
|t Removing DNA from Agarose Gels after Electrophoresis --
|g 5.17.
|t Restriction-Site Mapping --
|t General References --
|t References Cited --
|g ch. 6
|t Some Additional Tools for the Molecular Biologist --
|g 6.1.
|t Overview --
|g 6.2.
|t Introduction --
|g 6.3.
|t The Perfect Genomic Library --
|g 6.3.1.
|t Lambda (λ) Phage as a Vector --
|g 6.3.2.
|t Cloning with Cosmids --
|g 6.3.3.
|t Cloning in the Filamentous Phage M13 --
|g 6.3.4.
|t Phagemids --
|g 6.3.5.
|t BACs --
|g 6.4.
|t cDNA Cloning --
|g 6.5.
|t Enzymes Used in Molecular Biology Experiments --
|g 6.6.
|t Isolating a Specific Gene from a Library if Whole-Genome Sequencing is Not Done --
|g 6.7.
|t Labeling Probes by a Variety of Methods --
|g 6.7.1.
|t Synthesis of Uniformly Labeled DNA Probes by Random Primers --
|g 6.7.2.
|t Synthesis of Probes by Primer Extension --
|g 6.7.3.
|t End-Labeled Probes --
|g 6.7.4.
|t Single-Stranded Probes --
|g 6.7.5.
|t Synthetic Probes --
|g 6.8.
|t Baculovirus Vectors Express Foreign Polypeptides in Insect Cells --
|g 6.9.
|t Expression Microarray Analysis --
|t General References --
|t References Cited --
|g ch. 7
|t DNA Sequencing and the Evolution of the "-Omics" --
|g 7.1.
|t Overview --
|g 7.2.
|t Introduction --
|g 7.3.
|t The Dideoxy or Chain-Termination (Sanger) Method --
|g 7.4.
|t The Maxam and Gilbert Sequencing Method --
|g 7.5.
|t Shotgun Strategies for Genomes --
|g 7.6.
|t Sequencing DNA by the Polymerase Chain Reaction (PCR) --
|g 7.7.
|t Automated Sanger Sequencers --
|g 7.7.1.
|t Decreasing Costs of Sanger Sequencing --
|g 7.8.
|t Analyzing DNA Sequence Data --
|g 7.9.
|t DNA-Sequence Data Banks --
|g 7.10.
|t A Brief History of the Drosophila Genome Project --
|g 7.10.1.
|t The Original Drosophila Genome Project --
|g 7.10.2.
|t The Actual Drosophila Genome Project --
|g 7.10.3.
|t Drosophila Genome Analysis --
|g 7.10.4.
|t Surprises in the Drosophila Genome --
|g 7.11.
|t Next-Generation Sequencing Methods and Beyond --
|g 7.11.1.
|t Next-Generation (NextGen or Second-Generation) Sequencing --
|g 7.11.2.
|t Third-Generation Sequencing --
|g 7.12.
|t Bioinformatics --
|g 7.12.1.
|t Gene Ontology --
|g 7.13.
|t Genome Analyses of Other Arthropods --
|g 7.13.1.
|t Interesting Findings from Completed Genomes --
|g 7.13.2.
|t What Do You Need to Do to Sequence Your Favorite Insect's Genome--
|g 7.14.
|t Transposable Elements (TEs) as Agents of Genome Evolution --
|g 7.15.
|t Transcriptomics --
|g 7.15.1.
|t Tiling Microarrays --
|g 7.16.
|t Metagenomics --
|g 7.17.
|t Proteomics: Another "-Omic" --
|g 7.18.
|t Functional Genomics --
|g 7.19.
|t Structural Genomics---Another New Horizon--
|g 7.20.
|t Comparative Genomics --
|g 7.21.
|t Interactomes or Reactomes --
|g 7.22.
|t The Post-Genomic Era: Systems Genetics --
|t General References --
|t References Cited --
|g ch. 8
|t DNA Amplification by the Polymerase Chain Reaction: Molecular Biology Made Accessible --
|g 8.1.
|t Overview --
|g 8.2.
|t Introduction --
|g 8.3.
|t The Basic Polymerase Chain Reaction (PCR) --
|g 8.3.1.
|t The First Few Cycles are Critical --
|g 8.3.2.
|t PCR Power --
|g 8.3.3.
|t Standard PCR Protocols --
|g 8.3.4.
|t DNA Polymerases --
|g 8.3.5.
|t Other Thermostable DNA Polymerases --
|g 8.3.6.
|t Primers are Primary --
|g 8.3.7.
|t Storing Insects for the PCR --
|g 8.3.8.
|t Preparing DNA Samples --
|g 8.3.9.
|t PCR Automation --
|g 8.3.10.
|t Specificity of the PCR --
|g 8.3.11.
|t Detecting Primer Artifacts --
|g 8.3.12.
|t How Many Cycles Does a PCR Need--
|g 8.3.13.
|t Reducing the Evils of Contamination --
|g 8.4.
|t Some Modifications of the PCR --
|g 8.4.1.
|t AFLP for DNA Fingerprinting --
|g 8.4.2.
|t Anchored PCR --
|g 8.4.3.
|t Arbitrary Primers --
|g 8.4.4.
|t Asymmetric PCR --
|g 8.4.5.
|t Degenerate Primers --
|g 8.4.6.
|t Hot-Start PCR --
|g 8.4.7.
|t Inverse PCR --
|g 8.4.8.
|t Long PCR or High-Fidelity PCR --
|g 8.4.9.
|t Multiplex PCR --
|g 8.4.10.
|t Nested PCR --
|g 8.4.11.
|t PCR-RFLP --
|g 8.4.12.
|t Quantitative PCR --
|g 8.4.13.
|t Random Primers.
|