Cargando…

Optical bistability : controlling light with light /

Optical Bistability: Controlling Light With Light.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gibbs, Hyatt M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Orlando : Academic Press, 1985.
Colección:Quantum electronics--principles and applications.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Optical Bistability: Controlling Light with Light; Copyright Page; Dedication; Table of Contents; PREFACE; CHAPTER 1. INTRODUCTION TO OPTICAL BISTABILITY; 1.1. DEFINITION AND TYPES OF OPTICAL BISTABILITY; 1.2. OPTICAL LOGIC WITH BISTABLE DEVICES; 1.3. OPTICAL BISTABILITY IN LASERS; 1.4. EARLY HISTORY OF PASSIVE OPTICAL BISTABILITY; CHAPTER 2. STEADY-STATE MODELS OF OPTICAL BISTABILITY; 2.1. MEAN-FIELD MODEL OF MIXED ABSORPTIVE AND DISPERSIVE BISTABILITY IN CLUDING INHOMOGENEOUS BROADENING; 2.2. SZ�OKE ET AL. MODEL OF ABSORPTIVE OPTICAL BISTABILITY.
  • 2.3. simple model of dispersive optical bistability2.4. bonifacio-lugiato models; 2.5. conditions for optical bistability; 2.6. graphical solutions; 2.7. potential well description; 2.8. spectra; 2.9. transverse effects; 2.10 optical bistability without external feedback: increasing absorption optical bistability; chapter 3. intrinsic optical bistability experiments; 3.1. early searches for absorptive optical bistability; 3.2. sodium vapor: first observation of passive optical bistability and discovery of non linear index mechanism; 3.3. ruby: first solid; room temperature.
  • USE OF UNDRIVEN STATES3.4. KERR MEDIA: CS2; NITROBENZENE; LIQUID CRYSTALS; Rb; 3.5. THERMAL BISTABILITY: ZnS, ZnSe, COLOR FILTERS, GaAs, Si, DYES; 3.6. GaAs; 3.7. InSb; 3.8. OTHER SEMICONDUCTORS; 3.9. TRANSVERSE OPTICAL BISTABILITY; 3.10 OTHER OBSERVATIONS AND PROPOSALS; CHAPTER 4. HYBRID OPTICAL BISTABILITY EXPERIMENTS; 4.1. KASTAL'SKII'S PROPOSAL; 4.2. SMITH-TURNER HYBRID FABRY-PEROT BISTABLE DEVICE; 4.3. CAVITYLESS DEVICES; STUDENT EXPERIMENT; 4.4. DEVICES WITH WAVEGUIDE MODULATORS; 4.5. SURVEY OF OTHER HYBRID EXPERIMENTS; CHAPTER 5. OPTICAL SWITCHING: CONTROLLING LIGHT WITH LIGHT.
  • 5.1. transient nonlinear fabry-perot interferometer5.2. pulse self-reshaping and power limiting; 5.3. control of one beamby another; 5.4. optical transistor or transphasor; 5.5. external off and on switching of a bistable optical device; 5.6. critical slowing down; 5.7. phase-shift switching; 5.8. picosecond gating; chapter 6. instabilities: transient phenomena with constant input; 6.1. regenerative pulsations by competing mechanisms; 6.2. stability analysis; self-pulsing involving nonresonant modes; 6.3. ikeda instabilities: periodic oscillations, period doubling, and optical chaos.
  • 6.4. other instabilities of nonlinear cavities6.5. fluctuations and noise; chapter 7. toward practical devices; 7.1. desirable properties; figures of merit; 7.2. fundamental limitations; 7.3. nonlinear refractive indices; 7.4. optical computing; appendix a: differential gain without population inversion; appendix b: fabry-perot boundary condrtions; appendix c: maxwell-bloch equations; appendix d: fabry-perot cavity optimization with linear absorption and nonlinear refractive index; appendix e: instability of negative-slope portion of s-shaped curve of it versus ii.