Cargando…

Spectroscopy of Condensed Media : Dynamics of Molecular Interactions.

Spectroscopy of Condensed Media.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, C. H. (Chin Hsien), 1939-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Elsevier Science, 1985.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Spectroscopy of Condensed Media: Dynamics of Molecular Interactions; Copyright Page; Dedication; Table of Contents; Preface; CHAPTER 1. TIME-CORRELATION FUNCTIONS AND SPECTROSCOPY; 1.1 Introduction; 1.2 Stationary Random Process and Time-Correlation Functions; 1.3 Spectral Power Density and the Wiener-Khintchine Theorem; 1.4 Absorption Line Shape and the Dipole-Dipole Time-Correlation Function; 1.5 The Liouville Equation of Motion; 1.6 Linear-Response Theory; 1.7 Fluctuation-Dissipation Theorem; 1.8 Absorption of Radiation by a System of Electric Dipoles.
  • 1.9 Spectral Moments and Cumulants1.10 Stochastic Theory of Line Shape; 1.11 The Distribution-Function Method for the Random Process; CHAPTER 2. SPONTANEOUS SCATTERING OF LIGHT IN CONDENSED MEDIA; 2.1 Introduction; 2.2 Inhomogeneous Wave Equation for the Scattered Field; 2.3 Spectral Power Density and the Polarizability Density Time-Correlation Function; 2.4 Light Scattering from Translational Motion; 2.5 Translational Diffusion of Macromolecules in Dilute Solution; 2.6 Light Scattering from Translational Motion of a Pure Dense Fluid; 2.7 Hydrodynamic Equations.
  • 2.8 Solution of Hydrodynamic Equations and Interpretation of the Rayleigh-Brillouin Spectrum of a Viscous Fluid2.9 Viscoelastic Liquids; 2.10 Static-Structure Factor and Longitudinal Compliance; 2.11 Critical Opalescence; 2.12 Scattering of Light from Fluids of Optically Anisotropic Molecules; 2.13 Coupling of Polarizability Anisotropy to Transverse Waves; 2.14 Photoelastic Effects; 2.15 Raman Scattering; CHAPTER 3. ANGULAR MOMENTUM AND MOLECULAR ROTATION; 3.1 Introduction; 3.2 Rotation Matrix; 3.3 Spherical-Harmonics Addition Theorem; 3.4 Irreducible Spherical Tensors.
  • 3.5 Raman-Scattering Intensity and the Orientation Parameters3.6 Studies of Reorientational Motion by Depolarized Rayleigh and Raman Scattering; 3.7 Models for Calculating the Reorientational Time-Correlation Function; 3.8 Stochastic Theory of Molecular Reorientation; 3.9 Rotational-Diffusion Model; 3.10 Orientational Time-Correlation Functions of the Rotational-Diffusion Model; 3.11 Other Molecular-Reorientation Models; 3.12 Wigner-Eckart Theorem; 3.13 Electronic Quadrupole Effect; CHAPTER 4. THE TIME-CORRELATION FUNCTION AND THE MEMORY-FUNCTION FORMALISM; 4.1 Introduction.
  • 4.2 The Memory Function4.3 The Generalized Langevin Equation; 4.4 Time-Correlation Function Matrices; 4.5 Microscopic Theory for Brownian Motion; 4.6 Spatial Dependence of the Time-Correlation Function; 4.7 Hydrodynamic Approximation and Relaxation Times; 4.8 Generalized Hydrodynamics of the Momentum Density; 4.9 Symmetry Consideration; 4.10 Generalized Hydrodynamics Theory of the Isotropic Light-Scattering Spectrum; 4.11 Generalized Hydrodynamics Theory of the Depolarized Light-Scattering Spectrum; 4.12 Light Scattering from Viscoelastic Liquids.