|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn830456750 |
003 |
OCoLC |
005 |
20231117044838.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130319s2013 ne ob 001 0 eng d |
010 |
|
|
|a 2012022097
|
040 |
|
|
|a OPELS
|b eng
|e pn
|c OPELS
|d IDEBK
|d E7B
|d CUS
|d OCLCF
|d UPM
|d CDX
|d COO
|d DEBSZ
|d OCLCQ
|d LOA
|d AGLDB
|d COD
|d K6U
|d PIFAG
|d FVL
|d OCLCQ
|d TEFOD
|d OCLCQ
|d WRM
|d U3W
|d D6H
|d VT2
|d OCLCQ
|d WYU
|d YOU
|d AU@
|d LEAUB
|d OCLCO
|d AAA
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 981053205
|a 1055398689
|a 1058576282
|a 1065994691
|a 1081229964
|a 1228527878
|
020 |
|
|
|a 9780123944009
|q (electronic bk.)
|
020 |
|
|
|a 0123944007
|q (electronic bk.)
|
020 |
|
|
|a 9780123946157
|q (electronic bk.)
|
020 |
|
|
|a 0123946158
|q (electronic bk.)
|
020 |
|
|
|z 9781283941525
|
020 |
|
|
|z 128394152X
|
035 |
|
|
|a (OCoLC)830456750
|z (OCoLC)981053205
|z (OCoLC)1055398689
|z (OCoLC)1058576282
|z (OCoLC)1065994691
|z (OCoLC)1081229964
|z (OCoLC)1228527878
|
050 |
|
4 |
|a QC176
|b .B865 2013eb
|
082 |
0 |
4 |
|a 530.4/1
|2 23
|
100 |
1 |
|
|a Glazer, A. M.
|q (Anthony Michael),
|e author.
|
245 |
1 |
0 |
|a Space groups for solid state scientists /
|c Michael Glazer, Gerald Burns.
|
250 |
|
|
|a Third edition.
|
260 |
|
|
|a Amsterdam ;
|a Boston :
|b Elsevier,
|c �2013.
|
300 |
|
|
|a 1 online resource (xiii, 408 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
500 |
|
|
|a Previous edition by Gerald Burns.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as 'extremely useful' by Mathematical Reviews and as 'understandable and comprehensive' by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables itself. This remains the only book aimed at non-crystallographers that is devoted to teaching them about crystallographic space groups. Researchers within the solid state frequently need to understand publications that use space group information and are invariably disappointed when they turn, necessarily, to the mammoth eight volume set International Tables of Crystallography - so complete and at the same time so closely written that those not trained explicitly in crystallography cannot understand the explanations given. Huge sections of the Tables are given over to extremely careful and elaborate explanations and definitions that may be of interest to those crystallographers specialising in symmetry, but tend to obscure the meanings for those who are not so inclined. Five editions have now published since the first compilation in 1983, incorporating a diverse panorama of new content, and even introducing new symmetry elements that had not been considered earlier. In addition, the International Union has recently brought out whole new tranches of content: Volume A1 (on subgroups) and Volume E (on frieze, rod and layer groups - important for the study of 1 and 2 dimensional systems, such as domain walls). Reflecting the bewildering array of recent changes to the International Tables, this new edition brings the standard of science well up-to-date, reorganizes the logical order of chapters, improves diagrams and presents clearer explanations to aid understanding Clarifies, condenses and simplifies the meaning of the deeply written, complete Tables of Crystallography into manageable chunks Provides a detailed, multi-factor, interdisciplinary explanation of how to use the International Tables for a number of possible, hitherto unexplored uses Presents essential knowledge to those needing the necessary but missing pedagogical support and detailed advice - useful for instance in symmetry of domain walls in solids.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a What Is Symmetry? -- 1.1.Symmetry Operations -- 1.2.Point Symmetry Operations -- 1.3.Hexagonal Coordinates -- Ha�uy's Legacy -- 2.1.Lattice -- 2.2.Unit Cell -- 2.3.Crystal Structure -- 2.4.Crystal Systems -- 2.5.Summary -- Symmetry and Lattices -- 3.1.Centering of Lattices -- 3.2.The 14 Bravais Lattices -- 3.3.Primitive Cells of the 14 Bravais Lattices -- 3.4.The Wigner-Seitz Unit Cell -- 3.5.Two-Dimensional Lattices -- Introduction to Groups -- 4.1.Development of Crystallographic Point Groups -- 4.2.The Point Groups for Each Crystal System -- 4.3.The 32 Point Groups from Holohedries -- 4.4.Laue Classes and Groups -- 4.5.Point Group Notation -- Space Group Operators -- 5.1.The Symmorphic Space Groups -- 5.2.Non-Symmorphic Operations -- 5.3.Point Group of a Space Group -- 5.4.Space Groups -- 5.5.Derivation of Space Groups -- 5.6.Space Group Classifications -- 5.7.Two-Dimensional Space Groups -- 5.8.Subperiodic Groups -- What Does the ITA Tell Us? -- 6.1.Crystal Structure and Space Groups -- 6.2.Typical' Pages of the ITA -- 6.3.Example Pages from the ITA -- 6.4.Subgroups and Supergroups -- 6.5.Space Group Symmetry Operations -- 6.6.Hall Space Group Symbols -- And Now Atoms -- 7.1.Face-Centered Cubic Structures -- 7.2.Primitive Cubic Structures -- 7.3.Body-Centered Cubic Structures -- 7.4.Diamond Structure -- 7.5.Spinel Structure -- 7.6.Zinc Sulphide Structure -- 7.7.Chalcopyrite -- 7.8.Semiconductor Superlattices -- 7.9.Structural Phase Transitions in Crystals -- 7.10.Displacive SPTs -- 7.11.Proteins -- 7.12.Crystallographic Information File -- 7.13.Ferroic Phase Transitions -- 7.14.Surface Structure Plane and Layer Groups -- 7.15.Diffusion, Disordered Structures and Point Defects -- 7.16.Euclidean normalizers -- 7.17.Non-Crystallographic Symmetry -- 7.18.Structures with Z'>1 -- 7.19.Icosahedral Symmetry -- 7.20.Incommensurate Modulations -- 7.21.Charge Density Wave -- 7.22.Quasicrystals -- Bicolor Symmetry -- 8.1.Black and White Antisymmetry Groups -- 8.2.Effect on Vectors -- 8.3.Magnetic Point Groups -- 8.4.Translational Subgroups of Magnetic Groups -- 8.5.Black and White Space Groups -- 8.6.Magnetic Space Groups -- 8.7.Examples of Magnetic Structures -- 8.8.Representation Method -- 8.9.OG/BNS Magnetic Group Symbols.
|
650 |
|
0 |
|a Solid state physics.
|
650 |
|
0 |
|a Space groups.
|
650 |
|
6 |
|a Physique de l'�etat solide.
|0 (CaQQLa)201-0015752
|
650 |
|
6 |
|a Groupes spatiaux.
|0 (CaQQLa)201-0146108
|
650 |
|
7 |
|a Solid state physics
|2 fast
|0 (OCoLC)fst01125456
|
650 |
|
7 |
|a Space groups
|2 fast
|0 (OCoLC)fst01127727
|
700 |
1 |
|
|a Burns, Gerald,
|d 1932-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Glazer, A.M. (Anthony Michael).
|t Space groups for solid state scientists.
|b 3rd ed.
|d Amsterdam ; Boston : Elsevier, �2013
|z 9780123944009
|w (DLC) 2012022097
|w (OCoLC)802102960
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780123944009
|z Texto completo
|