Cargando…

Food industry wastes : assessment and recuperation of commodities /

Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kosseva, Maria R. (Editor ), Webb, Colin (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier : Academic Press, 2013.
Edición:First edition.
Colección:Food science and technology international series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn828864038
003 OCoLC
005 20231117044834.0
006 m o d
007 cr |||||||||||
008 130304s2013 ne a ob 001 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d GZM  |d UIU  |d YDXCP  |d OPELS  |d N$T  |d CUV  |d OCLCQ  |d CDX  |d OCLCF  |d OCLCQ  |d UIU  |d STF  |d ICA  |d OCLCQ  |d COCUF  |d K6U  |d OCLCQ  |d Z5A  |d ZCU  |d YDX  |d ESU  |d OCLCQ  |d OCLCA  |d U3W  |d D6H  |d VTS  |d CEF  |d RRP  |d OCLCQ  |d AUD  |d LEAUB  |d AJS  |d OCLCO  |d LUU  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 835592266 
020 |a 9780123919281  |q (electronic bk.) 
020 |a 0123919282  |q (electronic bk.) 
020 |z 9780123919212 
020 |z 0123919215 
035 |a (OCoLC)828864038  |z (OCoLC)835592266 
050 4 |a TD899.F585  |b F66 2013 
070 0 |a TD899.F585  |b F663 2013 
072 7 |a TEC  |x 012000  |2 bisacsh 
082 0 4 |a 664  |2 23 
245 0 0 |a Food industry wastes :  |b assessment and recuperation of commodities /  |c edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. 
250 |a First edition. 
264 1 |a Amsterdam :  |b Elsevier :  |b Academic Press,  |c 2013. 
300 |a 1 online resource (xxvi, 312 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Food science and technology international series 
504 |a Includes bibliographical references and index. 
520 |a Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes. Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste. 
505 0 |6 880-01  |a Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer. 
588 0 |a Print version record. 
650 0 |a Food industry and trade  |x Waste disposal. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Food Science.  |2 bisacsh 
650 7 |a Food industry and trade  |x Waste disposal  |2 fast  |0 (OCoLC)fst00930950 
700 1 |a Kosseva, Maria R.,  |e editor. 
700 1 |a Webb, Colin,  |e editor. 
776 0 8 |i Print version:  |t Food industry wastes.  |d London ; Singapore : Elsevier/Academic Press, �2013  |z 9780123919212  |w (OCoLC)828434965 
830 0 |a Food science and technology international series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123919212  |z Texto completo 
880 0 0 |6 505-00/(S  |g 4.1.1.  |t Organic Acids from Fruit Pomace --  |g 4.1.1.1.  |t Lactic Acid Production --  |g 4.1.1.2.  |t Citric Acid Production --  |g 4.1.1.3.  |t Fatty Acid Production --  |g 4.1.2.  |t Production of Ethanol --  |g 4.1.3.  |t Production of Enzymes --  |g 4.1.3.1.  |t α-Amylase --  |g 4.1.3.2.  |t Xylanase --  |g 4.1.3.3.  |t Protease --  |g 4.1.3.4.  |t Laccase --  |g 4.1.3.5.  |t Tannase --  |g 4.1.4.  |t Production of Polysaccharides --  |g 4.1.5.  |t Production of Baker's Yeast --  |g 4.1.6.  |t Feed Protein --  |g 4.2.  |t Production of Fine Chemicals: Aroma Compounds, Antibiotics and Pigments --  |g 4.2.1.  |t Aroma Compounds --  |g 4.2.2.  |t Antibiotics --  |g 4.2.3.  |t Production of Pigments --  |g 5.  |t Conclusions -- --  |g Ch. 6.  |t Functional Food and Nutraceuticals Derived from Food Industry Wastes --  |g 1.  |t Introduction --  |g 1.1.  |t Definition of Nutraceuticals and Functional Food --  |g 2.  |t Phenolic Compounds Derived from Fruit-and-Vegetable Processing Wastes --  |g 2.1.  |t Flavonoids --  |g 2.2.  |t Polyphenol Content of Grape Wine Wastes --  |g 2.  |t 2. 1 Proanthocyanidins --  |g 2.  |t 2. 2 Resveratrol --  |g 2.  |t 2. 3 Anthocyanins --  |g 2.3.  |t Polyphenols in Apple Pomace --  |g 3.  |t Vegetable Flavonoids --  |g 3.1.  |t Onion Flavonoids --  |g 3.2.  |t Flavonols of Onions --  |g 3.3.  |t Functionality of Flavonoids --  |g 3.  |t 3. 1 Prevention of Atherosclerosis and Cardiovascular Disease --  |g 3.  |t 3. 2 Antioxidant Activity --  |g 3.  |t 3. 3 Metabolic Syndrome --  |g 3.  |t 3. 4 Hormonal Activity --  |g 4.  |t Coloring Agents and Antioxidants --  |g 4.1.  |t Betalains --  |g 4.2.  |t Lycopenes --  |g 5.  |t Dietary Fibers --  |g 6.  |t Sulfur-Containing Bioactive Compounds --  |g 6.1.  |t Cabbage Glucosinolates --  |g 6.2.  |t Methods of Processing --  |g 7.  |t Extraction Processes from Food-and-Vegetable Waste --  |g 7.1.  |t Extraction of Phenolic Compounds from Olive Pomace --  |g 7.2.  |t Solvent and Enzyme-Aided Aqueous Extraction of Goldenberry --  |g 7.3.  |t Extraction of Antioxidants from Potato Peels by Pressurized Liquids --  |g 7.4.  |t Extraction of Phytochemicals from Common Vegetables --  |g 8.  |t Whey as a Source of Bioactive Peptides --  |g 8.1.  |t Occurrence of Bioactive Peptides in Whey and Other Dairy By-Products --  |g 8.2.  |t Functionality of Bioactive Peptides --  |g 8.2.1.  |t Regulation of the Gastrointestinal System --  |g 8.2.2.  |t Regulation of the Immune System --  |g 8.2.3.  |t Regulation of the Cardiovascular System --  |g 8.2.4.  |t Regulation of the Nervous System --  |g 8.2.5.  |t Antimicrobial Function --  |g 8.2.6.  |t Growth Factor Activity --  |g 8.3.  |t Commercial Dairy Products Containing Bioactive Peptides --  |g 8.4.  |t Commercial-Scale Production --  |g 9.  |t Product Development, Marketing, and Consumer Acceptance of Functional Foods --  |g 10.  |t Conclusions -- --  |g Ch. 7.  |t Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion --  |g 1.  |t Introduction --  |g 2.  |t Basic Principles of Anaerobic Digestion --  |g 2.1.  |t Conversion Flow of Organic Matter to Methane --  |g 2.1.1.  |t Disintegration and Hydrolysis --  |g 2.1.2.  |t Acidogenesis --  |g 2.1.3.  |t Acetogenesis (H2-producing) --  |g 2.1.4.  |t Methanogenesis --  |g 2.2.  |t Methane Production Potential of Organic Wastes --  |g 2.3.  |t Environmental Factors Affecting Anaerobic Digestion --  |g 2.3.1.  |t Temperature --  |g 2.3.2.  |t pH and Alkalinity --  |g 2.3.3.  |t Biological Toxic Compounds --  |g 3.  |t Process Development for Anaerobic Digestion of Organic Wastes --  |g 3.1.  |t Reactor Design for Anaerobic Digestion --  |g 3.1.1.  |t Continuously Stirred Tank Reactor (CSTR) --  |g 3.1.2.  |t Repeated Batch System --  |g 3.1.3.  |t Plugflow Reactor System --  |g 3.2.  |t High-Rate Methane Fermentation --  |g 3.2.1.  |t UASB System --  |g 3.2.2.  |t EGSB System --  |g 3.2.3.  |t UAFP System --  |g 3.3.  |t Multistage Systems --  |g 3.3.1.  |t Hydrogen-Methane Two-Stage Fermentation System (Hy-Met Process) --  |g 3.3.1.1.  |t Application to Brewery Effluent --  |g 3.3.1.2.  |t Application to Bread Manufacturing Wastes --  |g 3.3.2.  |t Ammonia-Methane Two-Stage System --  |g 4.  |t Fertilization of Residues After Anaerobic Digestion --  |g 5.  |t Conclusion -- --  |g III.  |t Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes. 
880 0 0 |6 505-01/(S  |g Ch. 8.  |t Use of Immobilized Biocatalyst for Valorization of Whey Lactose --  |g 1.  |t Introduction --  |g 2.  |t Methods of Immobilization --  |g 2.1.  |t Definition of Immobilized Biocatalyst --  |g 2.2.  |t Adsorption, Gel Entrapment, and Covalent-Binding --  |g 2.3.  |t Microencapsulation --  |g 2.3.1.  |t Emulsion/Interfacial Polymerization --  |g 2.3.2.  |t Liquid Droplet Forming-One-Step Method --  |g 2.4.  |t Stabilization of Enzymes via Immobilization --  |g 2.4.1.  |t Multipoint Covalent Attachment --  |g 2.4.2.  |t Multi-Subunit Immobilization --  |g 2.4.3.  |t Chemical Modifications --  |g 3.  |t Immobilized Enzymes --  |g 3.1.  |t Lactose Hydrolysis --  |g 3.2.  |t Production of Galacto-Oligosaccharides --  |g 4.  |t Immobilized Cell Systems --  |g 4.1.  |t Ethanol Production --  |g 4.2.  |t Lactic Acid Production --  |g 5.  |t Bioreactor Systems With Immobilized Biocatalyst --  |g 5.1.  |t Packed-Bed Reactors (PBRs) --  |g 5.2.  |t Continuous-Flow Stirred-Tank Reactors (CSTR) --  |g 5.3.  |t Fluidized-Bed Reactors (FBRs) --  |g 5.4.  |t Membrane Reactors (MRs) --  |g 6.  |t Kinetic Performance of the Immobilized Cells (IMCs) --  |g 6.1.  |t Kinetics of Free Cells --  |g 6.2.  |t Mass Transfer Considerations and the Observed Reaction Rate in an IMC System --  |g 7.  |t Mathematical Modeling of Immobilized Cell System --  |g 8.  |t Industrial Applications --  |g 8.1.  |t Lactose Hydrolysis with Immobilized β-Galactosidase --  |g 8.2.  |t Ethanol Production from Whey with Flocculated Yeasts --  |g 9.  |t Conclusions -- --  |g Ch. 9.  |t Hydrogen Generation from Food Industry and Biodiesel Wastes --  |g 1.  |t Introduction --  |g 2.  |t Basic Principle of Dark Hydrogen Fermentation --  |g 2.1.  |t Hydrogen Production by Strict Anaerobes --  |g 2.2.  |t Hydrogen Production by Facultative Anaerobes --  |g 3.  |t Effect of Intracellular and Extracellular Redox States on Hydrogen Production --  |g 4.  |t Bioreactor System for High-Rate Hydrogen Production --  |g 5.  |t Hydrogen Production from Industrial Organic Wastes --  |g 5.1.  |t Carbohydrates --  |g 5.2.  |t Food Oil (Glycerol-Rich Residue Discharged after Biodiesel Manufacturing) --  |g 6.  |t Treatment of Effluent After Dark Hydrogen Fermentation --  |g 6.1.  |t Methane Fermentation --  |g 6.2.  |t Photobiological Hydrogen Fermentation --  |g 7.  |t Concluding Remarks -- --  |g Ch. 10.  |t Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater --  |g 1.  |t Introduction --  |g 2.  |t Thermophilic Aerobic Digestion --  |g 3.  |t Thermophilic Microorganisms --  |g 4.  |t Bioremediation and Bio-Augmentation Strategies --  |g 4.1.  |t Target Wastes --  |g 4.1.1.  |t Bioconversion of Cheese Whey --  |g 4.1.1.1.  |t Strategy 1 Experiment --  |g 4.1.1.2.  |t Strategy 2 Experiments --  |g 4.1.1.3.  |t Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process --  |g 4.1.2.  |t Bioconversion of Grain Stillage/Distiller's Slops --  |g 4.1.3.  |t Bioconversion of Potato Stillage/Distiller's Slops --  |g 4.1.4.  |t Bioconversion of Potato Starch Production Wastes --  |g 4.1.5.  |t Bioconversion of Wheat Stillage --  |g 5.  |t A New Bioreactor Designed for Thermophilic Digestion --  |g 5.1.  |t General Layout and Operation System --  |g 5.2.  |t Bioreactor Concept and Description --  |g 5.3.  |t Bioreactor Performance --  |g 6.  |t Feed Production From Food Industry Wastes --  |g 7.  |t Conclusions -- --  |g Ch. 11.  |t Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater --  |g 1.  |t Introduction --  |g 2.  |t Mathematical Models of Bioreactors and Biodegradation Processes --  |g 2.1.  |t Modeling of Aerobic Biodegradation of Cheese Whey --  |g 2.1.1.  |t Approach I --  |g 2.1.2.  |t Approach II --  |g 2.2.  |t Modeling of the Biodegradation of Potato Stillage/ Distiller's Slops --  |g 2.2.1.  |t Version for Continuous Biodegradation --  |g 2.2.2.  |t Version for Batch Biodegradation --  |g 2.2.3.  |t Comparison of Model Output and Experimental Data --  |g 2.3.  |t Modeling of Anaerobic Digestion (AD) --  |g 2.3.1.  |t Case Study 1: Anaerobic Treatment of Chicken Wastes --  |g 2.3.1.1.  |t Model Assumptions --  |g 2.3.1.2.  |t Main Reactions Assumed in the Model --  |g 2.4.  |t Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD) --  |g 2.4.1.  |t Mass Balance --  |g 2.4.2.  |t Energy Balance --  |g 2.5.  |t Modeling of Wastewater Treatment Plants (WWTPs) --  |g 2.5.1.  |t Steady-State Models of WWTPs --  |g 3.  |t Process Analytical Technology --  |g 4.  |t Control Strategy Development --  |g 4.1.  |t Fuzzy Logic Control --  |g 4.2.  |t Control Strategy Development for Food Wastes --  |g 4.2.1.  |t Supervisory Control Strategies --  |g 4.2.2.  |t Physiological State Classification Strategies --  |g 4.2.3.  |t Direct Control Strategies --  |g 4.2.4.  |t Development of the KBCS --  |g 5.  |t Conclusions.