Op amps for everyone /
This book will help you design circuits that are reliable, have low power consumption and can be implemented in as small a size as possible, at the lowest possible cost. It bridges the gap between the theoretical and the practical by giving practical solutions using components that are available in...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Kidlington, Oxford ; Waltham, MA :
Newnes,
2013.
|
Edición: | 4th ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Integrated Circuit
- 9.4. When Failure Is Not an Option
- 9.5. When It Has to Work for a Really Long Time
- 9.6. Conclusions
- ch. 10 Voltage Regulation
- 10.1. Introduction
- 10.2. Regulator Cases
- 10.2.1. Virtual Ground: b = 0
- 10.2.2. Positive and Negative Voltage Regulators: b> 0, b <0
- 10.3. Make or Buy?
- 10.4. Linear Regulators
- 10.5. Switching Power Supplies
- 10.6.A Companion Circuit
- 10.7. Another Companion Circuit
- 10.8. Design Aid
- 10.9. Conclusions
- ch. 11 Other Applications
- 11.1. Introduction
- 11.2. Interfacing Digital-to-Analog Converters to Loads
- 11.3. Op Amp Oscillators
- 11.4. Hybrid Amplifiers and Power Boosters
- 11.5. Conclusions
- ch. 12 Manufacturer Design Aids
- 12.1. Introduction
- 12.2. Texas Instruments Tina-TI
- 12.3. Texas Instruments Filter Pro
- 12.4. National Semiconductor/Texas Instruments Webench
- 12.5. Analog Devices Version of NI Multisim
- 12.6. Analog Devices OpAmp Error Budget
- 12.7. Linear Technology LT Spice
- 12.8. Printed Circuit Board Layout
- 12.9. Conclusions
- ch. 13 Common Application Mistakes
- 13.1. Introduction
- 13.2. Op Amp Operated at Less Than Unity (or Specified) Gain
- 13.3. Op Amp Used as a Comparator
- 13.3.1. The Comparator
- 13.3.2. The Op Amp
- 13.4. Improper Termination of Unused Sections
- 13.5. DC Gain
- 13.6. Current Feedback Amplifier Mistakes
- 13.6.1. Shorted Feedback Resistor
- 13.6.2. Capacitor in the Feedback Loop
- 13.7. Fully Differential Amplifier Mistakes
- 13.7.1. Incorrect DC Operating Point
- 13.7.2. Incorrect Common-Mode Range
- 13.7.3. Incorrect Single-Ended Termination
- 13.8. Improper Decoupling
- 13.9. Conclusions.
- Machine generated contents note: ch. 1 The Op Amp's Place in the World
- 1.1. An Unbounded Gain Problem
- 1.2. The Solution
- 1.3. The Birth of the Op Amp as a Component
- 1.3.1. The Vacuum Tube Era
- 1.3.2. The Transistor Era
- 1.3.3. The Integrated Circuit Era
- Reference
- ch. 2 Review of Op Amp Basics
- 2.1. Introduction
- 2.2. Basic Concepts
- 2.2.1. Ohm's Law
- 2.2.2. The Voltage Divider Rule
- 2.2.3. Superposition
- 2.3. Basic Op Amp Circuits
- 2.3.1. The Non-Inverting Op Amp
- 2.3.2. The Inverting Op Amp
- 2.3.3. The Adder
- 2.3.4. The Differential Amplifier
- 2.4. Not So Fast!
- ch. 3 Separating and Managing AC and DC Gain
- 3.1.A Small Complication
- 3.2. Single Supply versus Dual Supply
- 3.3. Simultaneous Equations
- 3.3.1. Case 1: Vout= +mVin + b
- 3.3.2. Case 2: Vout = +mVin
- b
- 3.3.3. Case 3: Vout = -mVin + b
- 3.3.4. Case 4: Vout = -mVin
- b
- 3.4. So, Where to Now?
- 3.5.A Design Procedure, and a Design Aid
- 3.6. Summary
- ch. 4 Different Types of Op Amps
- 4.1. Voltage Feedback Op Amps
- 4.2. Uncompensated/Undercompensated Voltage Feedback Op Amps
- 4.3. Current Feedback Op Amps
- 4.4. Fully Differential Op Amps
- 4.4.1. What Does "Fully Differential" Mean?
- 4.4.2. How is the Second Output Used?
- 4.4.3. Differential Gain Stages
- 4.4.4. Single-Ended to Differential Conversion
- 4.4.5.A New Function
- 4.5. Instrumentation Amplifier
- 4.6. Difference Amplifier
- 4.7. Buffer Amplifiers
- 4.8. Other Types of Op Amps
- ch. 5 Interfacing a Transducer to an Analog-to-Digital Converter
- 5.1. Introduction
- 5.2. System Information
- 5.3. Power Supply Information
- 5.4. Input Signal Characteristics
- 5.5. Analog-to-Digital Converter Characteristics
- 5.6. Interface Characteristics
- 5.7. Architectural Decisions
- 5.8. Conclusions
- ch. 6 Active Filter Design Techniques
- 6.1. Introduction
- 6.2. The Transfer Equation Method
- 6.3. Fast, Practical Filter Design
- 6.3.1. Picking the Response
- 6.3.2. Low-Pass Filter
- 6.3.3. High-Pass Filter
- 6.3.4. Narrow (Single-Frequency) Bandpass Filter
- 6.3.5. Wide Bandpass Filter
- 6.3.6. Notch (Single-Frequency Rejection) Filter
- 6.4. High-Speed Filter Design
- 6.4.1. High-Speed Low-Pass Filters
- 6.4.2. High-Speed High-Pass Filters
- 6.4.3. High-Speed Bandpass Filters
- 6.4.4. High-Speed Notch Filters
- 6.5. Getting the Most Out of a Single Op Amp
- 6.5.1. Three-Pole Low-Pass Filters
- 6.5.2. Three-Pole High-Pass Filters
- 6.5.3. Stagger-Tuned and Multiple-Peak Bandpass Filters
- 6.5.4. Single-Amplifier Notch and Multiple-Notch Filters
- 6.5.5.Combination Bandpass and Notch Filters
- 6.6. Biquad Filters
- 6.7. Design Aids
- 6.7.1. Low-Pass, High-Pass, and Bandpass Filter Design Aids
- 6.7.2. Notch Filter Design Aids
- 6.7.3. Twin-T Design Aids
- 6.7.4. Final Comments on Filter Design Aids
- 6.8. Summary
- ch. 7 Using Op Amps for Radio frequency Design
- 7.1. Introduction
- 7.2. Voltage Feedback or Current Feedback?
- 7.3. Radiofrequency Amplifier Topology
- 7.4. Op Amp Parameters for Radio frequency Designers
- 7.4.1. Stage Gain
- 7.4.2. Phase Linearity
- 7.4.3. Frequency Response Peaking
- 7.4.4.-1 dB Compression Point
- 7.4.5. Noise Figure
- 7.5. Wireless Systems
- 7.5.1. Broadband Amplifiers
- 7.5.2. Intermediate-Frequency Amplifiers
- 7.6. High-Speed Analog Input Drive Circuits
- 7.7. Conclusions
- ch. 8 Designing Low-Voltage Op Amp Circuits
- 8.1. Introduction
- 8.2. Critical Specifications
- 8.2.1. Output Voltage Swing
- 8.2.2. Dynamic Range
- 8.2.3. Input Common-Mode Range
- 8.2.4. Signal-to-Noise Ratio
- 8.3. Summary
- ch. 9 Extreme Applications
- 9.1. Introduction
- 9.2. Temperature
- 9.2.1. Noise
- 9.2.2. Speed
- 9.2.3. Output Drive and Stage
- 9.2.4. So, What Degrades at High Temperature?
- 9.2.5. Final Parameter Comments
- 9.3. Packaging
- 9.3.1. The Integrated Circuit Itself
- 9.3.2. The Integrated Circuit Package
- 9.3.3. Connecting the