Cargando…

Op amps for everyone /

This book will help you design circuits that are reliable, have low power consumption and can be implemented in as small a size as possible, at the lowest possible cost. It bridges the gap between the theoretical and the practical by giving practical solutions using components that are available in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carter, Bruce, 1954-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Kidlington, Oxford ; Waltham, MA : Newnes, 2013.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn827932041
003 OCoLC
005 20231117044830.0
006 m o d
007 cr cnu---unuuu
008 130218s2013 enk ob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d CDX  |d COO  |d IDEBK  |d E7B  |d OCLCF  |d UPM  |d UIU  |d B24X7  |d OCLCQ  |d D6H  |d OCLCQ  |d K6U  |d U3W  |d WYU  |d LEAUB  |d VT2  |d OCLCQ  |d EYM  |d TUHNV  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB2A4229  |2 bnb 
016 7 |a 016190568  |2 Uk 
019 |a 1057357115  |a 1065926348  |a 1104049480  |a 1129375865  |a 1153001914  |a 1192342399  |a 1235845272  |a 1243611325  |a 1262688604  |a 1276915790 
020 |a 9781283923897  |q (MyiLibrary) 
020 |a 1283923890  |q (MyiLibrary) 
020 |z 9780123914958 
020 |z 0123914957 
035 |a (OCoLC)827932041  |z (OCoLC)1057357115  |z (OCoLC)1065926348  |z (OCoLC)1104049480  |z (OCoLC)1129375865  |z (OCoLC)1153001914  |z (OCoLC)1192342399  |z (OCoLC)1235845272  |z (OCoLC)1243611325  |z (OCoLC)1262688604  |z (OCoLC)1276915790 
050 4 |a TK7871.58.O6  |b C37 2013 
082 0 4 |a 621.39/5  |2 23 
100 1 |a Carter, Bruce,  |d 1954- 
245 1 0 |a Op amps for everyone /  |c Bruce Carter. 
250 |a 4th ed. 
260 |a Kidlington, Oxford ;  |a Waltham, MA :  |b Newnes,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book will help you design circuits that are reliable, have low power consumption and can be implemented in as small a size as possible, at the lowest possible cost. It bridges the gap between the theoretical and the practical by giving practical solutions using components that are available in the real world from component distributors. It does not just give a design with a transfer function but gives design tools based on that transfer function, getting you to a working circuit, bill of materials, and even board layout. With this book you will learn: Single op amp designs that get the most out of every amplifier Which specifications are of most importance to your design, enabling you to narrow down the list of amplifiers to those few that are most suitable Strategies for making simple "tweaks" to the design - changes that are often apparent once a prototype has been constructedHow to design for hostile environments - extreme temperatures, high levels of shock, vibration, and radiation - by knowing what circuit parameters are likely to degrade and how to counteract that degradation New to this edition: Unified design procedures for gain and offset circuits, and filter circuitsTechniques for voltage regulator designInclusion of design utilities for filter design, gain and offset, and voltage regulationAnalysis of manufacturer design aids Companion website with downloadable material A complete, cookbook style handbook for designing and building analog circuits A multitude of workable circuit designs that are ready to use, based on real-world component values from all the leading manufacturers, using components that are available from today's distributors A treasure trove of practical wisdom: strategies to tweak a design; guidelines for developing the entire signal chain and for designing in hostile environments; the specifications that are most important for a design, to name just a few 
500 |a Includes index. 
500 |a Title from PDF title page; (ScienceDirect; viewed on Feb. 18, 2013). 
504 |a Includes bibliographical references and index. 
505 0 |a Integrated Circuit -- 9.4. When Failure Is Not an Option -- 9.5. When It Has to Work for a Really Long Time -- 9.6. Conclusions -- ch. 10 Voltage Regulation -- 10.1. Introduction -- 10.2. Regulator Cases -- 10.2.1. Virtual Ground: b = 0 -- 10.2.2. Positive and Negative Voltage Regulators: b> 0, b <0 -- 10.3. Make or Buy? -- 10.4. Linear Regulators -- 10.5. Switching Power Supplies -- 10.6.A Companion Circuit -- 10.7. Another Companion Circuit -- 10.8. Design Aid -- 10.9. Conclusions -- ch. 11 Other Applications -- 11.1. Introduction -- 11.2. Interfacing Digital-to-Analog Converters to Loads -- 11.3. Op Amp Oscillators -- 11.4. Hybrid Amplifiers and Power Boosters -- 11.5. Conclusions -- ch. 12 Manufacturer Design Aids -- 12.1. Introduction -- 12.2. Texas Instruments Tina-TI -- 12.3. Texas Instruments Filter Pro -- 12.4. National Semiconductor/Texas Instruments Webench -- 12.5. Analog Devices Version of NI Multisim -- 12.6. Analog Devices OpAmp Error Budget -- 12.7. Linear Technology LT Spice -- 12.8. Printed Circuit Board Layout -- 12.9. Conclusions -- ch. 13 Common Application Mistakes -- 13.1. Introduction -- 13.2. Op Amp Operated at Less Than Unity (or Specified) Gain -- 13.3. Op Amp Used as a Comparator -- 13.3.1. The Comparator -- 13.3.2. The Op Amp -- 13.4. Improper Termination of Unused Sections -- 13.5. DC Gain -- 13.6. Current Feedback Amplifier Mistakes -- 13.6.1. Shorted Feedback Resistor -- 13.6.2. Capacitor in the Feedback Loop -- 13.7. Fully Differential Amplifier Mistakes -- 13.7.1. Incorrect DC Operating Point -- 13.7.2. Incorrect Common-Mode Range -- 13.7.3. Incorrect Single-Ended Termination -- 13.8. Improper Decoupling -- 13.9. Conclusions. 
505 0 |a Machine generated contents note: ch. 1 The Op Amp's Place in the World -- 1.1. An Unbounded Gain Problem -- 1.2. The Solution -- 1.3. The Birth of the Op Amp as a Component -- 1.3.1. The Vacuum Tube Era -- 1.3.2. The Transistor Era -- 1.3.3. The Integrated Circuit Era -- Reference -- ch. 2 Review of Op Amp Basics -- 2.1. Introduction -- 2.2. Basic Concepts -- 2.2.1. Ohm's Law -- 2.2.2. The Voltage Divider Rule -- 2.2.3. Superposition -- 2.3. Basic Op Amp Circuits -- 2.3.1. The Non-Inverting Op Amp -- 2.3.2. The Inverting Op Amp -- 2.3.3. The Adder -- 2.3.4. The Differential Amplifier -- 2.4. Not So Fast! -- ch. 3 Separating and Managing AC and DC Gain -- 3.1.A Small Complication -- 3.2. Single Supply versus Dual Supply -- 3.3. Simultaneous Equations -- 3.3.1. Case 1: Vout= +mVin + b -- 3.3.2. Case 2: Vout = +mVin -- b -- 3.3.3. Case 3: Vout = -mVin + b -- 3.3.4. Case 4: Vout = -mVin -- b -- 3.4. So, Where to Now? -- 3.5.A Design Procedure, and a Design Aid -- 3.6. Summary -- ch. 4 Different Types of Op Amps -- 4.1. Voltage Feedback Op Amps -- 4.2. Uncompensated/Undercompensated Voltage Feedback Op Amps -- 4.3. Current Feedback Op Amps -- 4.4. Fully Differential Op Amps -- 4.4.1. What Does "Fully Differential" Mean? -- 4.4.2. How is the Second Output Used? -- 4.4.3. Differential Gain Stages -- 4.4.4. Single-Ended to Differential Conversion -- 4.4.5.A New Function -- 4.5. Instrumentation Amplifier -- 4.6. Difference Amplifier -- 4.7. Buffer Amplifiers -- 4.8. Other Types of Op Amps -- ch. 5 Interfacing a Transducer to an Analog-to-Digital Converter -- 5.1. Introduction -- 5.2. System Information -- 5.3. Power Supply Information -- 5.4. Input Signal Characteristics -- 5.5. Analog-to-Digital Converter Characteristics -- 5.6. Interface Characteristics -- 5.7. Architectural Decisions -- 5.8. Conclusions -- ch. 6 Active Filter Design Techniques -- 6.1. Introduction -- 6.2. The Transfer Equation Method -- 6.3. Fast, Practical Filter Design -- 6.3.1. Picking the Response -- 6.3.2. Low-Pass Filter -- 6.3.3. High-Pass Filter -- 6.3.4. Narrow (Single-Frequency) Bandpass Filter -- 6.3.5. Wide Bandpass Filter -- 6.3.6. Notch (Single-Frequency Rejection) Filter -- 6.4. High-Speed Filter Design -- 6.4.1. High-Speed Low-Pass Filters -- 6.4.2. High-Speed High-Pass Filters -- 6.4.3. High-Speed Bandpass Filters -- 6.4.4. High-Speed Notch Filters -- 6.5. Getting the Most Out of a Single Op Amp -- 6.5.1. Three-Pole Low-Pass Filters -- 6.5.2. Three-Pole High-Pass Filters -- 6.5.3. Stagger-Tuned and Multiple-Peak Bandpass Filters -- 6.5.4. Single-Amplifier Notch and Multiple-Notch Filters -- 6.5.5.Combination Bandpass and Notch Filters -- 6.6. Biquad Filters -- 6.7. Design Aids -- 6.7.1. Low-Pass, High-Pass, and Bandpass Filter Design Aids -- 6.7.2. Notch Filter Design Aids -- 6.7.3. Twin-T Design Aids -- 6.7.4. Final Comments on Filter Design Aids -- 6.8. Summary -- ch. 7 Using Op Amps for Radio frequency Design -- 7.1. Introduction -- 7.2. Voltage Feedback or Current Feedback? -- 7.3. Radiofrequency Amplifier Topology -- 7.4. Op Amp Parameters for Radio frequency Designers -- 7.4.1. Stage Gain -- 7.4.2. Phase Linearity -- 7.4.3. Frequency Response Peaking -- 7.4.4.-1 dB Compression Point -- 7.4.5. Noise Figure -- 7.5. Wireless Systems -- 7.5.1. Broadband Amplifiers -- 7.5.2. Intermediate-Frequency Amplifiers -- 7.6. High-Speed Analog Input Drive Circuits -- 7.7. Conclusions -- ch. 8 Designing Low-Voltage Op Amp Circuits -- 8.1. Introduction -- 8.2. Critical Specifications -- 8.2.1. Output Voltage Swing -- 8.2.2. Dynamic Range -- 8.2.3. Input Common-Mode Range -- 8.2.4. Signal-to-Noise Ratio -- 8.3. Summary -- ch. 9 Extreme Applications -- 9.1. Introduction -- 9.2. Temperature -- 9.2.1. Noise -- 9.2.2. Speed -- 9.2.3. Output Drive and Stage -- 9.2.4. So, What Degrades at High Temperature? -- 9.2.5. Final Parameter Comments -- 9.3. Packaging -- 9.3.1. The Integrated Circuit Itself -- 9.3.2. The Integrated Circuit Package -- 9.3.3. Connecting the 
650 0 |a Operational amplifiers. 
650 6 |a Amplificateurs op&#xFFFD;erationnels.  |0 (CaQQLa)201-0002513 
650 7 |a Operational amplifiers  |2 fast  |0 (OCoLC)fst01046370 
776 0 8 |i Print version:  |a Carter, Bruce, 1954.  |t Op amps for everyone.  |d Oxford, UK ; Waltham, MA : Elsevier/Newnes, 2013  |z 9780123914958  |w (DLC) 2012474418 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780123914958  |z Texto completo