Shape memory and superelastic alloys : technologies and applications /
Shape memory and superelastic alloys possess properties not present in ordinary metals meaning that they can be used for a variety of applications. Shape memory and superelastic alloys: Applications and technologies explores these applications discussing their key features and commercial performance...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; Philadelphia, PA :
Woodhead Pub.,
2011.
|
Colección: | Woodhead Publishing in materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: pt. I Properties and processing 1
- 1. Mechanisms and properties of shape memory effect and superelasticity in alloys and other materials: a practical guide / K. Tsuchiya
- 1.1. Introduction
- 1.2. Properties of shape memory alloys (SMAs)
- 1.3. Fundamentals of shape memory alloys (SMAs)
- 1.4. Thermodynamics of martensitic transformation
- 1.5. Conclusions
- 1.6. References
- 2. Basic characteristics of titanium-nickel (Ti-Ni)-based and titanium-niobium (Ti-Nb)-based alloys / H.Y. Kim
- 2.1. Introduction
- 2.2. Titanium-nickel (Ti-Ni)-based alloys
- 2.3. Titanium-niobium (Ti-Nb)-based alloys
- 2.4. Conclusions
- 2.5. References
- 3. Development and commercialization of titanium-nickel (Ti-Ni) and copper (Cu)-based shape memory alloys (SMAs) / K. Yamauchi
- 3.1. Introduction
- 3.2. Research on titanium-nickel (li-Ni)-based shape memory alloys (SMAs)
- 3.3. Research on copper (Cu)-based shape memory alloys (SMAs).
- 13. Applications of superelastic alloys in the telecommunications, industry / T. Habu
- 13.1. Introduction
- 13.2. Products utilizing superelastic alloys in the telecommunications industry
- 14. Applications of superelastic alloys in the clothing, sports and leisure industries / T. Habu
- 14.1. Introduction
- 14.2. Products utilizing superelastic alloys in the clothing, sports and leisure industries
- 15. Medical applications of superelastic nickel-titanium (Ni-Ti) alloys / I. Ohkata
- 15.1. Introduction
- 15.2. Hallux valgus
- 15.3. Orthodontic wire
- 15.4. Guide wire
- 15.5. Biliary stents
- 15.6. Regional chemotherapy catheter
- 15.7. Endoscopic guide wire
- 15.8. Device for onychocryptosis correction
- 15.9. References.
- 3.4. Conclusions
- 3.5. References
- 4. Industrial processing of titanium-nickel (Ti-Ni) shape memory alloys (SMAs) to achieve key properties / T. Nakahata
- 4.1. Introduction
- 4.2. Melting process
- 4.3. Working process
- 4.4. Forming and shape memory treatment
- 4.5. References
- 5. Design of shape memory alloy (SMA) coil springs for actuator applications / T. Ishii
- 5.1. Introduction
- 5.2. Design of shape memory alloy (SMA) springs
- 5.3. Design hape memory alloy (SMA) actuators
- 5.4. Manufacturing of shape memory alloy (SMA) springs
- 5.5. Reference
- 6. Overview of the development of shape memory and superelastic alloy applications / S. Takaoka
- 6.1. Introduction
- 6.2. History of the applications of titanium-nickel (Ti-Ni)-based shape memory and superelastic (SE) alloys
- 6.3. Other shape memory alloys (SMAs)
- 6.4. Examples of the main applications of titanium-nickel (Ti-Ni)-based alloys
- pt. II Application technologies for shape memory alloys (SMAs)
- 7. Applications of shape memory alloys (SMAs) in electrical appliances / T. Habu.
- 7.1. Introduction
- 7.2. Automatic desiccators
- 7.3. Products utilizing shape memory alloys (SMAs)
- 7.4. Electric current actuator
- 7.5. Reference
- 8. Applications of shape memory alloys (SMAs) in hot water supplies / A. Suzuki
- 8.1. Shower faucet with water temperature regulator
- 8.2. Gas flow shielding device
- 8.3. Bathtub adaptors
- 9. The use of shape memory alloys (SMAs) in construction and housing / T. Inaba
- 9.1. Introduction
- 9.2. Underground ventilator
- 9.3. Static rock breaker
- 9.4. Easy-release screw
- 9.5. Acknowledgements
- 10. The use of shape memory alloys (SMAs) in automobiles and trains / T. Kato
- 10.1. Introduction
- 10.2. Shape memory alloys (SMAs) in automobiles
- 10.3. Oil controller in Shinkansen
- 10.4. Steam trap
- 10.5. Conclusions
- 10.6. References
- 11. The use of shape memory alloys (SMAs) in aerospace engineering / T. Ikeda
- 11.1. Introduction
- 11.2. Development and properties of CryoFit (Aerofit, Inc.)
- 11.3. Development and properties of Frangibolt (TiNi Aerospace, Inc.).
- 11.4. Development and properties of Pinpuller (TiNi Aerospace, Inc.)
- 11.5. Development and properties of variable geometry chevrons (VGC) (The Boeing Company)
- 11.6. Development and properties of hinge and deployment of lightweight flexible solar array (LFSA) on EO-1 (NASA and Lockheed Martin Astronautics)
- 11.7. Development and properties of rotating arm for material adherence experiment (MAE) in Mars Pathfinder mission (NASA)
- 11.8. References
- 12. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications / H. Kubo
- 12.1. Introduction
- 12.2. Iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
- 12.3. Shape memory effect of iron-manganese-silicon (Fe-Mn-Si) alloy
- 12.4. Mechanical properties of iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
- 12.5. Proper process for shape memory effect
- 12.6. Applications of iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
- 12.7. Future trends
- 12.8. References
- pt. III Application technologies for superelastic alloys.