Cargando…

Shape memory and superelastic alloys : technologies and applications /

Shape memory and superelastic alloys possess properties not present in ordinary metals meaning that they can be used for a variety of applications. Shape memory and superelastic alloys: Applications and technologies explores these applications discussing their key features and commercial performance...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Yamauchi, K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; Philadelphia, PA : Woodhead Pub., 2011.
Colección:Woodhead Publishing in materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: pt. I Properties and processing 1
  • 1. Mechanisms and properties of shape memory effect and superelasticity in alloys and other materials: a practical guide / K. Tsuchiya
  • 1.1. Introduction
  • 1.2. Properties of shape memory alloys (SMAs)
  • 1.3. Fundamentals of shape memory alloys (SMAs)
  • 1.4. Thermodynamics of martensitic transformation
  • 1.5. Conclusions
  • 1.6. References
  • 2. Basic characteristics of titanium-nickel (Ti-Ni)-based and titanium-niobium (Ti-Nb)-based alloys / H.Y. Kim
  • 2.1. Introduction
  • 2.2. Titanium-nickel (Ti-Ni)-based alloys
  • 2.3. Titanium-niobium (Ti-Nb)-based alloys
  • 2.4. Conclusions
  • 2.5. References
  • 3. Development and commercialization of titanium-nickel (Ti-Ni) and copper (Cu)-based shape memory alloys (SMAs) / K. Yamauchi
  • 3.1. Introduction
  • 3.2. Research on titanium-nickel (li-Ni)-based shape memory alloys (SMAs)
  • 3.3. Research on copper (Cu)-based shape memory alloys (SMAs).
  • 13. Applications of superelastic alloys in the telecommunications, industry / T. Habu
  • 13.1. Introduction
  • 13.2. Products utilizing superelastic alloys in the telecommunications industry
  • 14. Applications of superelastic alloys in the clothing, sports and leisure industries / T. Habu
  • 14.1. Introduction
  • 14.2. Products utilizing superelastic alloys in the clothing, sports and leisure industries
  • 15. Medical applications of superelastic nickel-titanium (Ni-Ti) alloys / I. Ohkata
  • 15.1. Introduction
  • 15.2. Hallux valgus
  • 15.3. Orthodontic wire
  • 15.4. Guide wire
  • 15.5. Biliary stents
  • 15.6. Regional chemotherapy catheter
  • 15.7. Endoscopic guide wire
  • 15.8. Device for onychocryptosis correction
  • 15.9. References.
  • 3.4. Conclusions
  • 3.5. References
  • 4. Industrial processing of titanium-nickel (Ti-Ni) shape memory alloys (SMAs) to achieve key properties / T. Nakahata
  • 4.1. Introduction
  • 4.2. Melting process
  • 4.3. Working process
  • 4.4. Forming and shape memory treatment
  • 4.5. References
  • 5. Design of shape memory alloy (SMA) coil springs for actuator applications / T. Ishii
  • 5.1. Introduction
  • 5.2. Design of shape memory alloy (SMA) springs
  • 5.3. Design hape memory alloy (SMA) actuators
  • 5.4. Manufacturing of shape memory alloy (SMA) springs
  • 5.5. Reference
  • 6. Overview of the development of shape memory and superelastic alloy applications / S. Takaoka
  • 6.1. Introduction
  • 6.2. History of the applications of titanium-nickel (Ti-Ni)-based shape memory and superelastic (SE) alloys
  • 6.3. Other shape memory alloys (SMAs)
  • 6.4. Examples of the main applications of titanium-nickel (Ti-Ni)-based alloys
  • pt. II Application technologies for shape memory alloys (SMAs)
  • 7. Applications of shape memory alloys (SMAs) in electrical appliances / T. Habu.
  • 7.1. Introduction
  • 7.2. Automatic desiccators
  • 7.3. Products utilizing shape memory alloys (SMAs)
  • 7.4. Electric current actuator
  • 7.5. Reference
  • 8. Applications of shape memory alloys (SMAs) in hot water supplies / A. Suzuki
  • 8.1. Shower faucet with water temperature regulator
  • 8.2. Gas flow shielding device
  • 8.3. Bathtub adaptors
  • 9. The use of shape memory alloys (SMAs) in construction and housing / T. Inaba
  • 9.1. Introduction
  • 9.2. Underground ventilator
  • 9.3. Static rock breaker
  • 9.4. Easy-release screw
  • 9.5. Acknowledgements
  • 10. The use of shape memory alloys (SMAs) in automobiles and trains / T. Kato
  • 10.1. Introduction
  • 10.2. Shape memory alloys (SMAs) in automobiles
  • 10.3. Oil controller in Shinkansen
  • 10.4. Steam trap
  • 10.5. Conclusions
  • 10.6. References
  • 11. The use of shape memory alloys (SMAs) in aerospace engineering / T. Ikeda
  • 11.1. Introduction
  • 11.2. Development and properties of CryoFit (Aerofit, Inc.)
  • 11.3. Development and properties of Frangibolt (TiNi Aerospace, Inc.).
  • 11.4. Development and properties of Pinpuller (TiNi Aerospace, Inc.)
  • 11.5. Development and properties of variable geometry chevrons (VGC) (The Boeing Company)
  • 11.6. Development and properties of hinge and deployment of lightweight flexible solar array (LFSA) on EO-1 (NASA and Lockheed Martin Astronautics)
  • 11.7. Development and properties of rotating arm for material adherence experiment (MAE) in Mars Pathfinder mission (NASA)
  • 11.8. References
  • 12. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications / H. Kubo
  • 12.1. Introduction
  • 12.2. Iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
  • 12.3. Shape memory effect of iron-manganese-silicon (Fe-Mn-Si) alloy
  • 12.4. Mechanical properties of iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
  • 12.5. Proper process for shape memory effect
  • 12.6. Applications of iron-manganese-silicon (Fe-Mn-Si) shape memory alloys (SMAs)
  • 12.7. Future trends
  • 12.8. References
  • pt. III Application technologies for superelastic alloys.